
Neurotoxicology and Teratology, Vol. 14, pp. 211-219, 1992 0892-0362/92 $5.00 + .00 
Printed in the U.S.A. All rights reserved. Copyright © 1992 Pergamon Press Ltd. 

Increasing Scientific Power 
With Statistical Power 

K E I T H  E .  M U L L E R ' *  A N D  V E R N O N  A .  B E N I G N U S t  

*Department o f  Biostatistics, CB# 7400, ~f Human Studies Division, HERL, US EPA, and 
Department o f  Psychology, University o f  North Carolina, Chapel Hill, NC 27599 

R e c e i v e d  M a y  1991; A c c e p t e d  S e p t e m b e r  1991 

MULLER, K. E. AND V. A. BENIGNUS. Increasing scientificpower with statisticalpower. NEUROTOXICOL. TER- 
ATOL. 14(3), 211-219, 1992.-A survey of basic ideas in statistical power analysis demonstrates the advantages and ease of 
using power analysis throughout the design, analysis, and interpretation of research. The power of a statistical test is the 
probability of rejecting the null hypothesis of the test. The traditional approach to power involves computation of only a 
single power value. The more general power curve allows examining the range of power determinants, which are sample size, 
population difference, and error variance, in traditional ANOVA. Power analysis can be useful not only in study planning, 
but also in the evaluation of existing research. An important application is in concluding that no scientifically important 
treatment difference exists. Choosing an appropriate power depends on: a) opportunity costs, b) ethical trade-offs, c) the size 
of effect considered important, d) the uncertainty of parameter estimates, and e) the analyst's preferences. Although precise 
rules seem inappropriate, several guidelines are defensible. First, the sensitivity of the power curve to particular characteristics 
of the study, such as the error variance, should be examined in any power analysis. Second, just as a small type I error rate 
should be demonstrated in order to declare a difference nonzero, a small type II error should be demonstrated in order to 
declare a difference zero. Third, when ethical and opportunity costs do not preclude it, power should be at least .84, and 
preferably greater than .90. 

Choosing sample size Research design Finding no effect Meta-analysis Sensitivity analysis 

INTRODUCTION 

Motivation 

T O X I C O L O G I S T S  and teratologists spend much of  their t ime 
and other  resources on the design, conduct ,  analysis, and re- 
port ing o f  research. Statistical methods for testing hypotheses 
dominate  current practice. Any  increase in the efficiency of  a 
design, analysis, or  the planning process would benefit  scien- 
tists. Statistical power analysis can enable a scientist to achieve 
such efficiencies. 

The intent here is to encourage the use o f  power analysis 
by explaining the advantages o f  doing so. Studies with either 
inadequate or  excessive sensitivity waste scientists' t ime and 
resources. Considering risk of  possible harm to subjects, ethi- 
cal concerns strengthen the desire for opt imal  sample size. 
Statistical power analysis substantially enhances a scientist's 
ability to plan and evaluate research. Readily available and 
inexpensive computer  programs have made using power analy- 
sis convenient.  

The emphases in this article are on a) a general conceptual 

approach, b) the reasons for conducting a power analysis, and 
c) the range o f  applications. The mechanics o f  how to conduct 
power analysis for particular applications are not  covered. It 
is hoped that the references will allow the readers to acquire 
the understanding of  the techniques for their particular appli- 
cations. The actual conduct of  such calculations is usually best 
left to a computer  program. 

Analysis o f  variance (ANOVA),  especially involving re- 
peated measures, is probably the most widely used data analy- 
sis method in toxicology and teratology. The widespread use 
of  such methods makes them a good prototype for the follow- 
ing discussion. The traditional approach depends on assuming 
errors that are homogeneous,  additive, and Gaussian. See 
Kirk (18) or Maxwell and Delaney (24) for comprehensive 
treatments.  A N O V A  models are special cases o f  a more gen- 
eral model  often referred to as the general linear multivariate 
model (25,34). A compact  and excellent introduction to the 
important  special case o f  repeated measures A N O V A  was pro- 
vided by O'Brien and Kaiser (30). Also note that multiple 
regression is a special case o f  the general model  (19). Al though 
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treatment levels (effects) in the model  are assumed to be fixed, 
a useful range of  random effect models can be treated, espe- 
cially those resulting f rom repeated measures designs. Many 
different classes o f  random effect models exist which require 
separate and special t reatment  for both hypothesis testing and 
power analysis. 

For  purposes o f  illustrating power properties,  it is suffi- 
cient to consider the simplest case of  the one-way A N O V A ,  
the two sample t test. Its properties generalize quite easily to 
all forms of  A N O V A ,  as well as all other  forms of  the general 
linear mult ivariate model.  In turn,  the power properties of  the 
general mult ivariate model  translate to most other  common  
data analysis methods.  

The Traditional Introduction to Hypothesis Testing 

To appreciate the value o f  statistical power analysis, it is 
necessary to have a clear understanding of  the concept and its 
properties. In turn, because power is a property o f  a statistical 
hypothesis test, the principles of  hypothesis testing are re- 
viewed to provide the necessary background.  

The most widespread implementat ion of  hypothesis testing 
may be referred to as a Neyman-Pear son  approach (named 
after the statisticians who first championed it). The topic is 
often introduced in the following way (6,19). It is assumed 
that one of  two hypotheses, the null or  the alternative, must 
hold. In the context o f  toxicology the null hypothesis may be 
stated as: 

Ho: toxicity of  compound  (under conditions tested) = 0 (1) 

and the alternative as 

HA: toxicity of  compound  (under conditions tested) *: 0. (2) 

For  convenience of  exposition, the phrase "under  conditions 
tested" will not  be explicitly stated in the remaining discussion, 
al though it should be recognized as necessary and implied. I f  
one rejects the null hypothesis and says a compound  is toxic 
when it is not,  then one has commit ted  a Type I error,  a false 
positive. The probabil i ty o f  a Type I error is usually denoted 
a.  Symmetrically,  if  one falls to reject the null hypothesis and 
says a compound  is not  toxic when it is, then one has commit-  
ted a Type II error,  a false negative. The probabili ty of  a Type 
II error is usually denoted by B. 

The assumption o f  two possible states o f  nature (toxic or 
not  toxic), coupled to the possibility o f  making one of  two 
decisions (toxic or not  toxic), leads to four  possible decision 
outcomes f rom testing a statistical hypothesis. Table 1 illus- 
trates the relationships among four  possible outcomes and 

T A B L E  1 

TRADITIONAL DESCRIPTION OF 
POSSIBLE DECISIONS AND RELATED 

PROBABILITIES FOR A STATISTICAL HYPOTHESIS TEST 

Decision 

"Truth" Ho: Not Toxic HA: Toxic 

Ho: Not Toxic 

HA: Toxic 

Pr(Correct Negative) = 
( 1  - c O  

Pr(False Negative) = 

Pr(Type II error) = B 

Pr(False Positive) = 

Pr(Type I error) = c¢ 

Pr(Correct Positive) = 
(1 - 8) = Power 
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FIG. 1. Power of the test of equality of means as a function of 
= 0zt - ~t2) for two independent samples with c~ = .05, 

N1 = N2 = 10, ando 2 = 1.0. 

the related probabilities. For  purposes of  defining the charac- 
teristics o f  power analysis, all characteristics o f  the test, in- 
cluding sample size, populat ion difference, and cz, are taken 
to be known values. For  a particular choice of  such values a 
test may be evaluated in terms of  the Type I and Type II error 
rates, c~ and/3.  Traditionally the power o f  a test is defined as 
Power = (1 - B), the probability of  correctly detecting the 
populat ion difference. 

The two-sample t test provides a useful example. The test 
is based on the assumption of  independent,  Gaussian errors 
with equal variances. To compute the probabilities in Table 1, 
it is necessary to specify a,  group sample sizes {Ni, N2), mean 
difference (~1 - /~2 = fi), and error variance (oz). These prop- 
erties determine the value of  ~. If  one accepts the Neyman-  
Pearson framework,  then the quality o f  study design and data 
analysis depend on simultaneously minimizing the Type I and 
II error rates. 

A More General Approach 

The aforement ioned introduction to statistical power se- 
verely limits understanding and use o f  the methods.  A more 
general approach leads to defining power as the probabili ty 
of  saying a difference exists and considering the probabili ty 
for a range of  alternative hypotheses. For  examples o f  treating 
power as a function, not  a single value, see (7,12,13). Figure 1 
is an illustration o f  the power (on the vertical axis) of  a two- 
sample t test as a function of  possible differences between the 
means, /~ = (#~ - /*2). A two-tailed test is assumed, with 
c~ = .05, N~ = N 2 = 10, and 02 = 1.0. The horizontal  axis 
in Fig. 1 may be interpreted as I/tl in order to include all 
possible mean differences. 
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Figure l,  as well as all other figures and tables, will be 
based on this same situation. The numbers did not arise as 
data from a particular experiment. Choosing 02 = 1.0 leads 
to ~ being in standard deviation units. Consequently the re- 
sults can be applied to any particular experiment by appro- 
priate interpretation of the units. For example, the horizontal 
axis of Fig. 1 may be taken to be ~ - #2)/~ or I/~l - /~21/a. 

The curve has several prototypic characteristics, including 
the fact that it increases monotonically as a function of size 
of mean difference and is an ogive. Furthermore, the intercept 
of the vertical axis is t~, whereas the curve has an upper asymp- 
tote of 1.0. The lower bound corresponds to a power (a proba- 
bility of saying a difference) of ct if ~ = 0. The upper asymp- 
tote indicates that as ~i becomes large the likelihood of 
detecting the treatment difference approaches certainty. The 
shape leads to the definition of three distinct regions in which 
power is low and changing slowly, or moderately low to mod- 
erately high and changing rapidly, or high and changing 
slowly. 

The power curve for a one-tailed test asymptotes to zero as 
goes to - 0% whereas the power curve for a two-tailed test is 

symmetric about/~ = 0. One-tailed tests do not exist for any 
hypothesis involving more than a single parameter, such as 
the overall test of equality of means in a one-way ANOVA 
with three or more groups. Even when applicable, many data 
analysts object to the logical properties of such tests. Hence 
one-tailed tests will not be considered further due to their 
limited utility. 

Table 1 embodies the traditional introduction to power, 
whereas Fig. 1 embodies the concept arising from a complete 
description of power. In the traditional introduction power is 
a single point and power for a zero difference is not men- 
tioned. The general approach allows a unified treatment of 
the many values of the power function. 

DESCRIBING POWER 

Variables Affecting Power 

The two-sample t test provides a simple example for the 
discussion of the determinants of power. The test is based on 
the assumption of independent, Ganssian errors with equal 
variances. In general, the power of the t test depends only on 
ct, sample size N = (N~ + N2), the ratio of group sample sizes 
(NI/N2), mean difference (~l - ~ 2  ~-  ~ ) ,  and error variance 
(02). Essentially the same description holds for the one-sample 
and paired-data t tests, with appropriate interpretation of the 
parameters. For example, for the paired-data test, 02 is the 
variance of the difference scores. 

Usually unequal sample sizes are not considered in 
planning experimental research because for a fixed sample 
size of N = (NI + N2) the maximum power occurs with 
N~ = N2 = N/2 .  In practice some data are often lost due to 
equipment failure or human error. Additional data should 
never be eliminated in order to create equal sample sizes. 
Power is always maximized by retaining all observations, even 
though the resulting group sample sizes are unequal. For ex- 
ample, the power of a t test with group sizes of NI and 
(Ni + 1) is greater than the power of a t test with group sizes 
of N~ and N~. 

The aforementioned description generalizes easily to en- 
compass the general liner multivariate model, again assuming 
fixed effects and independent, homogeneous, Gaussian errors. 
The value of this observation lies in the fact that a large range 
of repeated measures models can be treated as special cases of 

the model. For many readers, repeated measures ANOVA is 
the most common data analysis. As with the t test, for a fixed 
t~, power depends on only three components: sample size, 
pattern of mean differences being tested, and variance. The 
pattern of differences being tested, in turn, is determined by 
the choice of design (including covariate values), hypothesis 
tested, and population means. Covariate will be used to refer 
to any continuous predictor variable. Error variance must be 
generalized to describe the covariance matrix among any re- 
peated measures (or multiple responses). As sample size in- 
creases, or differences being tested increase, or error variance 
decreases, power increases. Changes in patterns of correla- 
tions among repeated measures can either increase or decrease 
power. 

The dependence of power for linear models on the design, 
hypothesis tested, and population means is illustrated in the 
following example. Consider planning an analysis of body 
weight for rats at 90 days of age. Assume that all animals will 
be dosed with either 0, 1, or 2 mg/kg of a substance once at 
age 30 days. Some basic candidate design and analysig combi- 
nations include: a) a t test based on doses of 0 and 2 mg/kg, 
with half of the animals in each group, b) a one-way ANOVA 
involving all three dose levels, c) using day 30 weight as a 
covariate assuming equal slopes for each dose group (tradi- 
tional ANOVA with a covariate, ANCOVA), d) using day 30 
weight as a covariate assuming unequal slopes for each dose 
group, and e) a dose x gender factorial ANOVA. The text- 
books (18,24) are useful sources for explanations of the practi- 
cal and technical distinctions among such designs. Taking re- 
peated measures, which would introduce Time as a design 
factor, is very common in such research. Combining features 
of the alternate designs might also be attractive. Comparing 
two or more designs leads to many possible differences in 
power. If the dose-response function is monotone, then the t 
test will have more power than the three-group ANOVA over- 
all test. The power difference in favor of the t test may be 
substantial. Except for extremely small sample sizes, compar- 
ing dose 0 to dose 2 in the ANOVA, conducting the test at 
nominal c~, yields essentially the same power as for the t test. 
Adding covariates to the ANOVA or allowing unequal slopes 
in the ANCOVA will increase power if the gain due to reduc- 
tion in error variance exceeds the loss due to reduced error 
degrees of freedom. 

The scientist's desire to control Type I error has an impor- 
tant effect on power. For example, some of the analysis deci- 
sions just discussed can be explored in the data of interest. 
The disadvantage of such a strategy is the attendant increase 
in Type I error rate. Strategies for balancing Type I and Type 
II error rates were discussed in (29). The use of power analysis 
was recommended in study planning to focus the analysis plan 
on a small number of alternative models. For example, one 
might choose to use the data to test whether unequal slopes 
are required, then reduce to the simpler model if the test is 
not significant. A single planned test allows branching to the 
best analysis, while still allowing good control of Type I error. 
The reader is urged to consider the texts and articles refer- 
enced in this article for a more thorough evaluation of alterna- 
tive analyses and strategies. 

Reporting a Power Analysis 

Rather than treat the complexity that results from consider- 
ing all variables that affect power, it is usually convenient to 
consider only a few. Often, for example, only one choice of 
c~, study design (not including N), and hypothesis tested are 
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evaluated. Hence some combina t ion  o f  the size o f  the sample,  
hypothesized error  variance,  and hypothesized pat tern o f  
mean differences are varied. Table 2 provides a summary  o f  
such an analysis for  a two-sample  t test. The various values in 
the table consti tute a sensitivity analysis, which is strongly 
recommended  for any power  analysis. The nonlineari ty o f  the 
power funct ion usually dictates varying the parameters ,  such 
as variance, mean difference,  and sample size, on a logarith- 
mic scale. A variety o f  values in a table such as Table 2 can 
greatly aid in planning a study. The values chosen can be 
based on quantiles o f  the sampling distr ibution of  sample esti- 
mates o f  the parameters .  The technique is illustrated in the 
last paragraph o f  this section. In addi t ion to the impact  o f  
varying sample size, the rewards for reducing error variance 
or increasing the t rea tment  difference can easily be grasped 
by tabling results for  al ternate values. 

Table 3 provides an interesting contras t  to Table 2 because 
only c~ was changed,  f rom 0.05 to 0.01. Taken together ,  the 
two tables would allow a scientist the ability to evaluate the 
consequences o f  adding four  variables and an associated 
Bonferroni  correct ion to a p lanned analysis. The nonlineari ty 
of  the funct ion leads to small differences with some combina-  
tions o f  parameters ,  and large differences with others.  Such a 
compar ison  helps quant i fy  the t rade-offs  in deciding how 
many measures to collect. 

TABLE 2 

TWO-SAMPLE t TEST POWER (x 100) FOR a = .05 
AS A FUNCTION OF ERROR VARIANCE (o2), 

MEAN DIFFERENCE (#~ - /~2 = ~5), 
AND SAMPLE SIZE (N, = N2 = N/2) 

02 5 N Power 

0.32 0.5 l0 23 
0.32 0.5 20 46 
0.32 0.5 40 78 

0.32 1.0 l0 69 
0.32 1.0 20 96 
0.32 1.0 40 > 99 

0.32 2.0 10 >99 
0.32 2.0 20 > 99 
0.32 2.0 40 > 99 

1.00 0.5 l0 l l  
1.00 0.5 20 19 
1.00 0.5 40 34 

1.00 1.0 10 29 
1.00 1.0 20 56 
1.00 1.0 40 87 

1.00 2.0 10 79 
1.00 2.0 20 99 
1.00 2.0 40 > 99 

2.05 0.5 10 08 
2.05 0.5 20 1 i 
2.05 0.5 40 19 

2.05 1.0 10 16 
2.05 1.0 20 32 
2.05 1.0 40 58 

2.05 2.0 10 49 
2.05 2.0 20 84 
2.05 2.0 40 99 

TABLE 3 

TWO-SAMPLE t TEST POWER (× 100) FOR ct = .01 
AS A FUNCTION OF ERROR VARIANCE (02), 

MEAN DIFFERENCE (/x~- t~ 2 = iS), 
AND SAMPLE SIZE (N~ = N 2 = N/2) 

02 ~ N Power 

0.32 0.5 l0 07 
0.32 0.5 20 22 
0.32 0.5 40 54 

0.32 1.0 l0 37 
0.32 1.0 20 84 
0.32 1.0 40 >99 

0.32 2.0 10 96 
0.32 2.0 20 >99 
0.32 2.0 40 >99 

1.00 0.5 10 03 
1.00 0.5 20 06 
1.00 0.5 40 14 

1.00 1.0 10 10 
1.00 1.0 20 29 
1.00 1.0 40 67 

1.00 2.0 10 48 
1.00 2.0 20 93 
1.00 2.0 40 > 99 

2.05 0.5 10 02 
2.05 0.5 20 03 
2.05 0.5 40 06 

2.05 1.0 10 05 
2.05 1.0 20 12 
2.05 1.0 40 32 

2.05 2.0 10 21 
2.05 2.0 20 60 
2.05 2.0 40 95 

Figure 2 comprises a presentat ion o f  all o f  the informat ion  
in Table 2, as well as much more informat ion.  Each funct ion 
depicts the dependence of  power on mean difference (/t). The 
three curves correspond to the three particular values o f  error 
variance treated in Table 2 (0.32, 1.00, and 2.05), with more  
variance generating less power.  In addit ion to providing far 
more  power values, a graph of  the power function also com- 
pels the viewer to recognize the three distinct regions of  the 
power curve, and to recognize the impact o f  uncertainty about  
parameters .  

When  the error variance value is an estimate f rom a pilot 
study, one may choose to use scale factors corresponding to 
the endpoints  o f  the confidence interval a round the estimate. 
For  the example,  it was assumed that  02 was based on 10 error  
degrees of  f reedom, a typical value for a pilot study. For  
observat ions that  can be assumed to be independent  and fol- 
low a co mmo n  Gaussian distribution, then 02 is propor t ional  
to a X 2. The 2.5°7o and 97.507o critical values for a x 2 with 10 
degrees of  f reedom are approximately 3.2 and 20.5. In turn 
the corresponding 95°7o confidence-interval endpoints  for 
02 = 1.00 are (1.00) • (3.2/10) = .32 and (1.00) • (20.5/10) 
= 2.05. 

PROSPECTIVE POWER ANALYSIS 

One o f  the most  common  questions asked of  a statistician 
is "How many subjects do I need?" The tradit ional introduc- 
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FIG. 2. Power of the test of equality of means as a function of 
~5 = ~ - tO for two independent samples with ct = .05, N~ = N2 = 10, 
o ~ either .32, 1.00, or 2.05. 

tion to power analysis often leads the scientist into considering 
varying only sample size and ignoring the roles of mean differ- 
ences and variance. More generally, power analysis allows 
comparing the consequences of any change in the design or 
analysis of a study. Such analysis is prospective in that it is 
conducted before the study is begun. Examples include com- 
paring a) two-group and three-group designs, b) alternate hy- 
pothesis tests such as trend tests and pair-wise contrasts, 
c) significance tests evaluated with and without a Bonferroni 
correction, and d) even alternate test statistics such as Wilks' 
test and the Geisser-Greenhouse test for repeated measures. 

Strategies for insuring appropriate statistical practice in 
toxicology were recommended by Muller et al. (29). Power 
analysis constitutes an integral part of their recommendations. 
They recommended using top-down planning to choose a 
well-focused, practical design. They also recommended max- 
imizing efficiency by balancing Type I (false positive) and 
Type II (false negative) errors. This can be done by using 
appropriate power analysis and the best available statistical 
analysis. Their final recommendation was to implement 
multiple-study strategies to meet both confirmatory and ex- 
ploratory goals. The results of an earlier study can be used to 
provide excellent estimates of the inputs to a power analysis. 
In this fashion, power analysis can be used in conducting and 
quantifying the iterative refinement inherent to the scientific 
process. 

QUANTITATIVE METHODS FOR EVALUATING 
EXISTING RESEARCH 

Overview 

Scientists often face the need to evaluate existing research, 
such as in trying to synthesize a collection of research findings, 

or planning a new study. Furthermore, toxicologists and tera- 
tologists are increasingly asked by regulators to provide quan- 
titative, rather than qualitative guidance. Retrospective power 
analysis is strongly recommended in such situations. Power 
analysis may be the only analysis needed, or may be used in 
combination with other techniques. 

Meta-Analysis 

Meta-analysis (9) has become popular for evaluating exist- 
ing research. Several authors have provided book-length treat- 
ment of the topic (10,15,16,33). Some (5,22) considered the 
topic in the more general context of reviewing research. The 
review (32) of one book 06) contains a discussion of some 
technical issues of the kind that permeate the work in the area. 
Statisticians continue to develop the methods to formulate 
guidelines for their use. 

Among the collection of tools available for reviewing re- 
search, meta-analysis may be likened to a chainsaw: allowing 
rapid but rough cuts, and dangerous to use without training. 
In our opinion, meta-analysis should be conducted only when 
re-analysis combined with power analysis is not practical. 

Re-Analysis of Existing Studies 

The re-analysis of combined data can be superior to meta- 
analysis for examining a collection of existing research. If all 
studies of interest use variables in the same response metric 
(or ones that can be mapped into a common metric), then 
re-analysis may be more sensitive, provide more capabilities, 
and be model based. For an example use of the technique see 
Benignus et al. (2). 

Enthusiasm concerning the concept of meta-analysis 
should be tempered with a recognition of its limitations. Com- 
parison to re-analysis allows highlighting the problems. As 
defined by the names, the inputs to meta-analysis are analyses, 
whereas the inputs to re-analysis are data. Meta-analysis usu- 
ally operates on a single number, such as the p value or stan- 
dardized mean difference (di/a), from each study. Hence, the 
meta-analyst assumes that the information bandwidth for 
each study is only one number wide. In contrast, the re-analyst 
may choose the most appropriate collection of statistics as the 
sufficient set. 

The major barrier to re-analysis is data availability. Many 
scientists choose not to archive research data, at least not in 
any documented and machine readable format. Scientists are 
understandably leery about sharing data, fearing misrepresen- 
tation or being "scooped." Hence, data are rarely combined 
to be re-analyzed. For re-analysis to become common, scien- 
tists will need to develop and abide by ethical standards about 
sharing data. 

Retrospective Power Analysis for Claiming "No Effect" 

Power analysis is an excellent tool for the quantitative eval- 
uation of existing research. One important application lies in 
interpreting a nonsignificant data analysis. Such an analysis 
may be characterized as retrospective power analysis because 
it is conducted after completion of the study and planned data 
analysis. 

Statistical tests with nonsignificant results are particularly 
important in testing toxicity or teratogenicity. Defensible in- 
terpretation of such results depends on an appreciation of 
the distinction between statistical significance and scientific 
importance, as well as accurate information about the sensitiv- 
ity of the study to treatment differences of scientific impor- 
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tance. Power analysis is a quantitative evaluation of  the sensi- 
tivity of the study. Naturally the power analysis should 
consider treatment differences of  scientifically interesting 
magnitude, rather than trivially small ones or absurdly large 
ones. It may be argued that just as a small t~ (Type I error) is 
required to declare a difference nonzero, a small/3 (Type II 
error) should be required to declare a difference zero. 

We strongly endorse the position just stated. The recom- 
mendation was followed in three earlier articles. Consider 
(14), in which no significant differences were found in evoked 
potentials or reaction times due to carbon monoxide (CO) 
exposure. Power curves were reported to demonstrate that 
substantial power had been available for scientifically impor- 
tant differences (see Fig. 3 and surrounding discussion in 14). 
Also consider (1) in which no significant difference was found 
in symptom reporting between subjects who were exposed to 
high levels of  CO and those who were not. Power values were 
provided for detecting differences in reporting rates to bolster 
the claim of  no substantial difference (see Table 4 and sur- 
rounding discussion in 1). Finally consider (3), in which retro- 
spective power analysis was used to plan and interpret a repli- 
cation study (see the last paragraph of  the Method section as 
well as the Discussion in 3). 

Retrospective Power Analysis for Planning a Replication 

A second important application of  retrospective power 
analysis lies in planning a replication study. Such an analysis 
is a prospective power analysis for the replication study. The 
distinctive feature is that the same results comprise a retro- 
spective power analysis for the study to be replicated. On first 
consideration, using power analysis in planning a replication 
study would seem to be a waste of  time. However, simply 
trying to duplicate the earlier study may lead to a study with 
either inadequate or excessive power. Inadequate power may 
arise due to failure to account for uncertainty in the parameter 
estimates. Assuming that the variance is no greater than the 
previously observed value may lead to estimating power that 
is too large. Such a mistake would occur in roughly half of all 
cases unless an appropriate sensitivity analysis is conducted. 
For an example of  a sensitivity analysis, see the earlier discus- 
sion of  Table 2. More generally, inadequate power may arise 
because the original study had low power (even though chance 
favored the scientist). Similarly, excessive power may arise 
because the original study had very high power. 

CRITERIA FOR JUDGING POWER TO BE ADEQUATE 
(HOW BIG IS BIG?) 

Issues 

In both prospective and retrospective power analysis one 
must specify the level of  power deemed adequate. Five issues 
must be addressed: 

1. opportunity costs, 
2. ethical trade-offs, 
3. the size of  effect considered important, 
4. the uncertainty of  parameter estimates, and 
5. the analyst's preference for amount of  power. 

The following discussion is based on the assumption that 
the vast diversity of  applications precludes universal rules. We 
think that the scientific goals for a power analysis should 
determine the power level required. Considering each of  the 
five issues will aid in the determination. 

Opportunity Costs 

Collecting any scientific observation has some cost associ- 
ated with it. The costs may only be monetary but usually 
include time and effort. In turn, time allocated to a particular 
study cannot be spent on another study. Hence power analysis 
can be an aid to professional success by helping avoid designs 
with low power or wastefully high power. 

If two design alternatives have equivalent power, then one 
may choose the alternative with lower opportunity costs. For 
example, a common trade-off involves collecting fewer re- 
peated measures on a sampling unit (such as fewer pups per 
litter) to observe more sampling units (more litters). The scien- 
tific goals, the nature of the experimental procedure, and the 
facilities available to the scientist help determine which alter- 
native should be chosen in a particular situation. 

Ethical Trade-offs 

Study design and data analysis usually involve many ethical 
issues. Research involving humans or animals has been the 
focus of the most discussion in this context. Current standards 
require basing the decision to proceed on the ratio of benefit 
to risk. Institutional review board members consider the risks 
and benefits to subjects, the scientists, and the society in judg- 
ing a particular study. Some of the conflicts that result can be 
quantified by evaluating the power of  candidate studies. 

Consider the following example. In evaluating a compound 
with toxicity of  practical importance, inadequate power favors 
approval of the compound, whereas excessive power involves 
unnecessary risk to subjects. If the compound produces no 
toxicity of practical importance, then inadequate power has 
no immediate cost, whereas excessive power still involves un- 
necessary risk to subjects. A delayed cost of inadequate power 
can occur if the original scientist or another scientist recog- 
nizes the inadequate power and subsequently conducts an- 
other study. In that situation, subjects in the first study experi- 
enced unnecessary risks. Achieving adequate power by using 
a high Type I error rate introduces the costs associated with 
falsely indicting an innocuous compound, thereby further 
complicating the trade-offs. 

A contrasting range of examples comes from the evaluation 
of  the efficacy of  medicinal treatments. Explicit treatment of 
sample size consideration as an ethical issue dominates the 
design of  clinical trials with human subjects. In evaluating a 
compound with efficacy of practical importance, inadequate 
power favors disapproval of the compound, and hence, risk 
to people left untreated. Excessive power involves unnecessary 
delay in approval (and risk to people via delayed treatment). 
If the compound produces no efficacy of practical impor- 
tance, then inadequate power has no immediate cost, but may 
lead to delayed costs from conducting a second study of  ade- 
quate power. Achieving adequate power by using a high Type 
I error rate introduces the costs associated with falsely com- 
mending a compound of medicinal value, thereby further 
complicating the trade-offs. 

What Is a Big Effect? 

The size of the effect of interest must be defined in order 
to compute power. In our opinion, the scientific context 
should be used to define the size of a minimally important 
difference. Even for the same response variable and for the 
same target population, the size of  the scientifically important 
difference can vary across studies. For example, a particular 
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deleterious effect observed as a consequence of chronic expo- 
sure might be trivial, while the same effect observed as a con- 
sequence of acute exposure may be substantial. 

Many approaches have been taken to define an effect of 
consequence. One approach involves defining the importance 
of an effect by referring to sources of natural variation. Con- 
sider the example of figure-eight maze activity in rats. Differ- 
ences between genders, times of day, and estrous states (for 
females) provide natural definitions of substantial effects. 
From the perspective of psychometric theory, this corresponds 
to criterion-referenced evaluation. 

In contrast, norm-referenced evaluation would involve de- 
fining a big effect in terms of the SD of the response variable. 
This provides a second approach to defining an effect of con- 
sequence. Cohen (4) supported this approach by discussing 
effects as small, medium, or large in terms of SD units. The 
great attraction of the method, its lack of dependence on the 
application, may be considered to be its greatest weakness. 
Because the SD varies substantially as a function of experi- 
mental conditions the same absolute effect may be judged as 
trivial or substantial by different scientists. The same failing 
can occur with meta-analysis methods which often use this 
standardized-difference approach. Heterogeneity of experi- 
mental methods can mask or simulate heterogeneity of effects. 
Hence one could draw the wrong conclusion, in either direc- 
tion, depending on the nature of effects and range of experi- 
mental methods. 

Uncertainty o f  Estimates 

In the calculation of power, a data analyst often must esti- 
mate or guess values for some parameters. For the example of 
the t test discussed earlier, the error variance often falls into 
this category. Any uncertainty in the value of such nuisance 
parameters introduces uncertainty in the power calculation. 
The results of a sensitivity analysis provide the information 
needed to help protect against the uncertainty. The analyst 
faces another compromise in balancing the uncertainty against 
ethical and opportunity costs. 

Two methods seem practical for including the uncertainty 
in the power calculations. One method involves examining the 
data generation process and deciding what range of parame- 
ters could plausibly exist. For example, a plausible range for 
body temperature provides a rather small range of plausible 
SDs. A second method depends on having choices of parame- 
ter values which are estimates computed from a sample of 
data. Traditional statistical theory can be used to erect confi- 
dence limits about the estimates. In turn, the confidence limits 
are used in power calculations to estimate the limits on the 
power. The validity of the method depends on both the test 
and parameters of interest. Statisticians have just begun to 
recognize the need and to develop methods for providing accu- 
rate confidence limits for estimated power. 

The aforementioned t test results provide a useful example 
of some technical issues in finding confidence limits for esti- 
mated power. Using the X 2 distribution to create a confidence 
interval around the error variance, and in turn around the 
power value, gives results which are analytically defensible. 
However, simulation results demonstrate that the confidence 
interval on the estimated power is somewhat too small, espe- 

cially with small sample estimates of variance. Some improve- 
ment may be achieved by recognizing that an estimated nonce- 
ntrality parameter follows a distribution of a random variable 
proportional to an F statistic. This still does not yield an exact 
result for the distribution of estimated power. Furthermore 
estimating various combinations of parameters may have 
varying effects on the confidence interval for estimated power. 
These issues must be resolved by future statistical research. 
Given the current state of knowledge, the X 2 technique may be 
useful in a sensitivity analysis. 

How Much Power Is Enough? 

Consulting statisticians often have clients ask "How many 
subjects do I need?" We subscribe to the position that the 
scientist has the responsibility to make that decision. Power 
analysis results typically will be evaluated in light of a) oppor- 
tunity costs, b) ethical trade-offs, c) the size of effect consid- 
ered important, d) the uncertainty of parameter estimates, and 
e) the analyst's preference for amount of power. This is an 
example of a general philosophy which may be described as 
situational design. 

Three alternate positions will be examined concerning an 
appropriate level of power. Each position corresponds to a 
particular region or subregion of the power curve. As dis- 
cussed earlier and shown in Figs. 1 and 2, the power curve for 
standard statistical tests includes three regions: the left shelf, 
the slope, and the right shelf. The left shelf region always 
corresponds to very low power, the slope region includes both 
low and high power values, and the right shelf includes only 
high power values. It seems highly unlikely that any scientist 
would knowingly design a study with power in the left shelf. 
Therefore, all positions described next consider only the mid- 
dle and right portions of the curve. 

The first position corresponds to insuring that a study has 
power at least in the middle of the curve, say .50 to .70. In 
some scientific circles, the power value of .80 (/3 = .20) has 
achieved nearly the same popularity as ct = .05. A power of 
.50 corresponds to being equally likely to find the effect as to 
not find the effect. Similarly a power of .75 corresponds to 
finding the effect three out of four times, and missing the 
effect one out of four times. Unfortunately the power of a 
study in the slope region is very sensitive to any small change 
in effect size, error variance, or sample size. Two or three 
small differences which all go against the scientist may se- 
verely reduce the power. 

The second position may be derived from characteristics 
of the power curve deduced using asymptotic properties of 
the noncentral distribution function) For the t test example, 
the boundary between the slope and the right shelf corre- 
sponds approximately to a study with power greater than .84. 
This also applies to an F test (which includes the t test as a 
special case). Studies with power in the region above the 
boundary (the right shelf) are not very sensitive to any small 
change in effect size, error variance, or sample size. There- 
fore, a desire for robustness of power leads to choosing a 
study with power of at least. 84. 

The third position emanates from the wish to control Type 
I and Type II error rate equally well. This typically leads to 
requiring power of at least .90 and often .95 or more. Doing 

2 The reader who wishes to examine the details should note that a) noncentrai F tends to behave like a nonccntral X 2 as denominator df 
increase (17), b) an appropriately scaled noncentrai X 2 tends to behave like a Gaussian random variable as either the noncentrality or dfparameter 
increases by itself (17), and c) the shelf boundaries are defined by the points of inflection of the derivative of the power curve (by examination of 
third derivatives). 
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SO insures that any modest change in effect size, error vari- 
ance, or sample size, or even a combination of such changes, 
cannot adversely affect power. Studies of this kind have power 
values away from the boundary between the slope and the 
right shelf. 

Without consideration of the other issues involved in 
choosing a power level, we prefer power values in the right 
shelf. The increase in robustness from moving away from the 
boundary seems worthwhile. We recommend designing studies 
with power of approximately .90. Conclusions concerning 
lack of effect which are based on retrospective power analysis 
would apparently need to meet the same standard. In this 
application, the Type II error rate plays the role usually as- 
signed to the Type II error rate. Therefore, an even higher 
power requirement also seems defensible in order to make a 
strong claim. 

METHODS FOR COMPUTING POWER 

Printed Sources 

Books provide the most widely available access to power 
analysis. Probably the most widely used reference in power 
analysis is by Cohen (4). The book is aimed directly at the 
practicing scientist, and therefore is centered on explanation 
with minimal formulas. The 1988 edition is simply a reprinting 
of the 1977 book. Consequently it lacks coverage of some 
newer methods. In addition, the tables and methods are based 
on approximations which lose accuracy as sample sizes get 
smaller. A more limited handbook (23) has many attractive 
features. Another treatment of the same topic, although in a 
rather idiosyncratic manner, can be found in Kraemer and 
Thiemann (20). All three sources do provide a detailed intro- 
duction to the principles and practice of power analysis for a 
range of practical situations. These books also include useful 
references if the reader wishes to delve further into a particular 
method. In summary, using any one of these books is often 
sufficient and infinitely better than no power analysis. Despite 
this, lack of coverage of a particular topic should not be taken 
as a guarantee that no help is available. 

Power calculation methods for many techniques are scat- 
tered throughout the statistical literature. Unfortunately most 
authors of available statistics texts failed to include coverage 
of power methods. The aforementioned books cover the great 
majority of analysis techniques used by readers of this jour- 
nal. Certain articles provide additional information that may 
be useful. Useful tables for the power of the multiple correla- 
tion test for the case in which the predictors follow a Gaussian 
distribution are available in Gatsonis and Sampson's paper 
(8). The accuracy of popular sample size formulas has been 
reviewed by Kupper and Hafner (21). An excellent tutorial on 
power calculations in univariate linear models can be found 
in O'Brien and Lohr's work (31). 

Power calculation methods have been developed only rela- 
tively recently for some methods. For example, methods for 
approximating power for repeated measures ANOVA with 
multivariate and corrected univariate approaches respectively 
have been reported (26,27,28). 

Computer Software 

Producing graphs and tables of power calculations can 
clearly be done best with computers. A substantial amount of 
power analysis software has been published. The utility of the 
programs depends on the computer hardware, the operating 
system, the presence of other software, and the computing 

and statistical sophistication of the data analyst. As of this 
writing, the statistical package corporations have only begun 
to recognize the need for power analysis integrated with data 
analysis. The reader should consult with their statistical pack- 
age's representatives to discover what is available. Such corpo- 
rations respond positively to user requests when the volume 
becomes sufficient. 

Given the short time during which such information would 
be accurate, only a shallow survey is provided. It is likely that 
the most common current computer environment for readers 
is an IBM compatible microcomputer running PC-DOS. 
Goldstein reviewed power software for that particular operat- 
ing system (11). Since that review both SYSTAT and BMDP 
have released modules. The second most common environ- 
ment for readers is an Apple Macintosh using the Apple sup- 
plied operating system. The SYSTAT module is supported for 
the Macintosh. Version 2 of JMP, from SAS Institute, has a 
useful amount of power analysis available. 

The widespread use of repeated measures analysis does not 
correspond to widespread availability of appropriate power 
software. SPSS MANOVA has some abilities embedded in it. 
For those able and willing to conduct power analysis in terms 
of matrix algebra notation, software is distributed with the 
SAS IML example library to all registered sites. As of this 
writing, the distribution is expected to begin in Fall, 1992. 

CONCLUSIONS 

1. Prospective use of power analysis provides substantial 
advantages. By embedding power evaluation in the habits of 
design, the scientist minimizes research effort and maximizes 
research sensitivity. Power analysis stimulates the iterative re- 
finement of scientific hypothesis, design, and analysis. 

2. A sensitivity analysis is a necessary component of any 
power analysis. The sensitivity analysis should account for 
uncertainty in estimates of parameters, such as the error vari- 
ance in a t test. Graphs and tables improve not only the clarity 
of presentation but also the likelihood of an optimal decision 
about choices of design, analysis, and sample size. 

3. Align power calculations with the study. The effort in 
conducting a power analysis should reflect the money to be 
spent, the time to complete study, and ethical issues. Power 
should be calculated for the actual analysis and hypothesis of 
most interest. When this is not possible, the nearest approxi- 
mation available should be used. 

4. Retrospective use of power analysis provides substantial 
advantages. Claims of no difference between treatments 
should include appropriate power analysis. It also can be used 
to optimize design in planning replications. 

5. The choice of effect judged to be of scientific importance 
should be based on practical relevance and comparison to 
natural sources of effect. 

6. When consideration of ethical and opportunity costs 
does not preclude it, power should be at least .84, and prefera- 
bly greater than .90. This corresponds to the right shelf of the 
power curve. 

7. Convenient tables and software are available, at least 
for the most common applications. Lobbying software ven- 
dors may help stimulate better availability. More complex 
power analyses may require the collaboration of a statistician. 
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