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SUMMARY

A microarray study aims at having a high probability of declaring genes to be di�erentially expressed
if they are truly expressed, while keeping the probability of making false declarations of expression
acceptably low. Thus, in formal terms, well-designed microarray studies will have high power while
controlling type I error risk. Achieving this objective is the purpose of this paper. Here, we discuss
conceptual issues and present computational methods for statistical power and sample size in microarray
studies, taking account of the multiple testing that is generic to these studies. The discussion encompasses
choices of experimental design and replication for a study. Practical examples are used to demonstrate
the methods. The examples show forcefully that replication of a microarray experiment can yield large
increases in statistical power. The paper refers to cDNA arrays in the discussion and illustrations but the
proposed methodology is equally applicable to expression data from oligonucleotide arrays. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Microarray studies aim to discover genes in biological samples that are di�erentially ex-
pressed under di�erent experimental conditions. Experimental designs for microarray studies
vary widely and it is important to determine what statistical power a particular design may
have to uncover a speci�ed level of di�erential expression. In this paper we adopt an ANOVA
model for microarray data. Selected interaction parameters in the ANOVA model measure dif-
ferential expression of genes across experimental conditions. The paper discusses conceptual
issues and presents computational methods for statistical power and sample size in microarray

∗ Correspondence to: Mei-Ling Ting Lee, Channing Laboratory, BWH=HMS, 181 Longwood Avenue, Boston, MA,
02115-5804, U.S.A.

† E-mail: stmei@channing.harvard.edu

Contract=grant sponsor: National Institute of Health; contract=grant numbers: HG02510-01, HL66795-02.
Contract=grant sponsor: Natural Sciences and Engineering Research Council of Canada.

Received December 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Accepted April 2002



3544 M.-L. T. LEE AND G. A. WHITMORE

studies. The methodology takes account of the multiple testing that is part of all such studies.
The link to implementation algorithms for multiple testing is described. A Bayesian perspective
on power and sample size determination is also presented. The discussion encompasses choices
of experimental design and replication for a study. Practical examples and case studies are
used to demonstrate the methods. Abbreviated sample size and power tables are included
for several standard designs. The examples show forcefully that replication of a microarray
experiment can yield large increases in statistical power. The paper refers to cDNA arrays
in the discussion and illustrations but the proposed methodology is equally applicable to
expression data from oligonucleotide arrays.

2. TEST HYPOTHESES IN MICROARRAY STUDIES

The key statistical quantity in a microarray study is the di�erential expression of a gene in a
given experimental condition. Our study of statistical power centres on an analysis of variance
(ANOVA) model that incorporates a set of interaction parameters re�ecting di�erential gene
expression across experimental conditions. For illustrations of ANOVA models in microar-
ray studies refer to Kerr and Churchill [1], Kerr et al. [2], Lee et al. [3, 4] and Wol�nger
et al. [5], among others.
We take the response variable for the ANOVA model as the logarithm (to base 2) of the

machine reading of intensity and refer to it simply as the log-intensity. Thus, if W is the
intensity measurement, the response variable in the ANOVA model is taken as Y = log2(W ).
We assume that W is positive so the logarithm is de�ned. If the readings are background
corrected then we assume that only corrected readings with positive values are used in the
analysis. There is some question about whether background correction is advisable. We do
not wish to address this dispute in our study here. It is a common practice to calculate the
log-ratio of machine readings for the red and green dyes in some cDNA experiments. This
practice corrects in a direct way for the varying amount of DNA deposited on the array
across the spots. Our ANOVA model accommodates this kind of e�ect by the inclusion of
appropriate main e�ects and interaction e�ects, as we will describe shortly. Our experience
shows that the use of log-intensity with an appropriate selection of explanatory factors and
their interactions provides a powerful modelling framework for a wide variety of microarray
experimental designs.

2.1. The ANOVA model

A typical ANOVA model incorporates various factors and their interactions to take account
of sources of variability in the microarray data. For example, one might include factors such
as gene G, specimen or experimental condition C, array slide S, and dye D in the model,
with each factor having several levels.
The generic structure of our ANOVA model is as follows:

Yb= �0 + �1(b1) + �2(b2) + · · ·+ �L(bL) +
L∑
l=1

L∑
k¿l
�lk(bl; bk) + · · ·+ �b (1)

Here l=1; : : : ; L denotes a set of L experimental factors. Parameter �0 is a constant term.
Parameter �l(bl) denotes a main e�ect for factor l when it has level bl, for l=1; : : : ; L,
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respectively. Similarly, parameters �lk(bl; bk) denote pairwise interaction terms for factors l
and k when they have their respective levels bl and bk , with l; k=1; : : : ; L. For example,
with L=3 factors, the parameter �13(b1; b3), where (b1; b3)= (5; 4), signi�es the interaction
parameter for factors 1 and 3 when these two factors have their levels 5 and 4, respectively.
The model can be expanded to include third- and higher-order interaction terms if needed,
as indicated by the series of dots in (1). The error term is denoted by �b. The index b is a
vector of the form (b1; : : : ; bL) where bl denotes the level of factor l. Also, if required, an
additional index component can be added to label replicated observations at any given factor
level combination.
The factor condition refers to the biological specimen or experimental condition. Kerr and

Churchill [1] use the agricultural word ‘variety’ for this term. The term dye refers to the dye
colour of the intensity reading. When these and other factors are included in the ANOVA
model as main e�ects, they serve the role of normalizing the gene expression data.

2.2. Interaction e�ects

Sets of interaction terms are typically needed in the ANOVA model to account for variability
in gene expression. Although all pairwise sets of interaction e�ects may not be included, those
involving gene-by-condition, gene-by-slide, and gene-by-dye interactions, that is, G×C; G× S
and G×D, are usually needed. The �rst of these sets, the G×C interaction e�ects, are the
quantities of scienti�c interest because, as we will discuss shortly, these re�ect the di�erential
expression of genes across the specimens or experimental conditions.
Returning to the comment about the common use of the log-ratio of red and green intensities

in microarray analyses, we point out that the correlation of these intensities at the same spot
which results from the varying amount of deposited DNA is accounted for in ANOVA model
(1) by the inclusion of appropriate interaction terms. With a single array slide, for instance,
inclusion of the gene-by-dye interaction term G×D su�ces. Where there are multiple slides,
the third-order interaction G×D× S might be included to capture this source of variability.
The microarray design must include a dye-colour reversal feature to allow these important
interactions to be estimated.

2.3. Parameter estimation

The parameters of the ANOVA model may be estimated by various methods. We shall assume
that ordinary least squares methods are used here but the methodology is readily modi�ed
for other estimation approaches, such as those based on the L1 norm. As pointed out by
Lee et al. [4], the main-e�ect and interaction parameters involving G will be as numerous
as the genes themselves and, hence, typically, may number in the thousands. They propose
a two-stage estimation procedure for the ANOVA model in which the parameter estimates
involving genes are derived in a second-stage analysis where the estimation proceeds gene by
gene.
As we have just noted, the set of gene-by-condition interaction e�ects, G×C, is the prin-

cipal set of interest in a microarray study. We shall denote these interaction e�ects by the
symbols Igc, with their estimates denoted by Îgc. Here, indices g and c refer to gene g and
condition c, with ranges g=1; : : : ; G and c=1; : : : ; C, respectively. It is a standard requirement
of ANOVA models that the parameters Igc and their estimators Îgc be subject to estimability
constraints that hold simultaneously across conditions c=1; : : : ; C and genes g=1; : : : ; G. We
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will adopt the constraint form where their (weighted) sums equal zero. We refer to this kind
of constraint as an interaction sum constraint. The constraint implies that Îgc is interpreted
as the estimated di�erential expression intensity for gene g under condition c relative to the
average for all genes and conditions in the study.
To illustrate the kind of quantity that Îgc represents, suppose that Îgc happens to equal

1:231. Then we know that the absolute expression intensity for gene g in experimental con-
dition c is 21:231 = 2:37 times the (weighted geometric) mean expression levels for all genes
and conditions in the study, other factors in the study being held constant. In other words,
Îgc=1:231 implies a 2.37-fold over-expression or up-regulation of gene g. As we shall show
later, the pattern of the estimates Îgc for all conditions c will form the basis of statistical
inference about whether a gene g exhibits di�erential gene expression across the experimental
conditions.
ANOVA model (1) assumes that the main e�ects and interaction e�ects of the model are

�xed, not random. In some studies, however, it may be quite reasonable to treat some of
these e�ects as random and, more speci�cally, to assume they are normally distributed. For
example, the main e�ect for array slide S may very well be a random outcome from a normal
population of array e�ects. A mixed model approach to the analysis of microarray data has
been considered by Wol�nger et al. [5]. The mixed model would provide di�erent parameter
estimates and, hence, possibly di�erent substantive results. The implications of random e�ects
for power levels of designs remain to be investigated in depth.

2.4. The null and alternative hypotheses

Let g=(Igc; c=1; : : : ; C)′ denote the column vector of interaction parameters for gene g,
where the prime denotes transposition. With respect to di�erential gene expression, the null
and alternative (research) hypotheses of interest for any given gene g can be stated in terms
of g as follows:

H0 : g= 0, the zero vector, that is, gene g is not di�erentially expressed
H1 : g= d, a speci�ed non-zero vector, that is, gene g is di�erentially expressed

The non-zero vector d in H1 is a target vector of di�erential expression levels that it
is desired to detect. For instance, a study may include four experimental conditions such
that conditions c=1 and c=2 replicate a treatment condition and conditions c=3 and c=4
replicate a control condition. In this illustrative study, it may be desired to detect any gene
g that has a di�erential expression pattern of form d=(1:5; 1:5;−1:5;−1:5)′. This pattern is
equivalent to testing for an 8-fold up-regulation under treatment relative to control, that is,
21:5−(−1:5) = 23 =8.
A test of hypotheses exposes an investigator to two types of error. A principal aim of a

microarray study is to have a high probability of declaring a gene to be di�erentially expressed
if it is truly di�erentially expressed, while keeping the probability of making a false declaration
of di�erential expression acceptably low. The achievement of this objective is the purpose of
this paper.
In an actual microarray study, genes that are truly di�erentially expressed will generally

do so to di�erent degrees, some weakly some strongly. Therefore, the components Igc of the
interaction parameter vectors g will have values that vary over a continuum as g varies.
It is important for us to stress here, however, that this distribution of true expression levels
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does not directly enter into the power calculation. Instead, the alternative hypothesis H1 refers
only to a single non-zero vector g, speci�cally, the target vector d. It is this target vector
that is to be used as the reference di�erential expression pattern for a power calculation. The
assumption is that the target vector d (or any vector that lies an equivalent ‘distance’ from
zero) represents a pattern of di�erential expression that the investigator wishes to detect with
high probability (that is, with high power).

2.5. Distributional form of estimated di�erential expression

In many applications, it is reasonable to assume that estimate vector ˆg, where ˆg=(Îgc; c=
1; : : : ; C)′, has an approximate multivariate normal distribution with a mean zero and covari-
ance matrix � under the null hypothesis H0. The claim to a normal approximation is especially
strong where the microarray study involves repeated observations of gene expression across
conditions so that the interaction estimates Îgc are averages of independent log-intensity read-
ings. An appeal to the central limit theorem then supports the assumption of approximate
normality. Likewise, under the alternative hypothesis H1; ˆg also has an approximate multi-
variate normal distribution with the same covariance matrix but now with non-zero mean d.
We note that the covariance matrix � will have rank C − 1 because of the interaction sum
constraint.

2.6. Summary measures of estimated di�erential expression

On the basis of the ANOVA modelling approach, di�erent statistics may be used to summarize
di�erential expression for single genes in microarray studies. We shall calculate power for
some summary measure Vg= h( ˆg) of the estimated di�erential expression vector ˆg for gene
g, where h is any function speci�ed by the investigator that captures the particular di�erential
expression features that are of scienti�c interest in the statistical test. The variable Vg is a
random variable for gene g that will have some realization vg in the microarray study. Under
null hypothesis H0, summary measure Vg has a probability density function (PDF) that we
denote by f0(v). Similarly, under the alternative hypothesis H1, summary measure Vg has a
PDF that we denote by f1(v). We shall show that it is the statistical distance between these
two density functions, in a precise sense, that de�nes the level of power for a microarray
study.

3. ERROR CONTROL AND MULTIPLE TESTING IN MICROARRAY STUDIES

As microarray studies typically involve the simultaneous study of thousands of genes, the
probabilities of producing incorrect test conclusions (false positives and false negatives) must
be controlled for the whole gene set. In this development, we adapt the logic behind power
and sample size calculations that are taking place at the planning stage of a study.

3.1. Multiple testing context

The following framework, adapted from Benjamini and Hochberg [8], is useful for
understanding multiple testing and the control of inferential errors in microarray
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studies:

Multiple testing framework

True hypothesis Test declaration: Number of genes
Unexpressed Expressed

Unexpressed H0 A0 R0 G0
Expressed H1 A1 R1 G1

Total A R G

This framework postulates that there are, in fact, only two possible situations for any gene.
Either the gene is not di�erentially expressed (hypothesis H0 true) or it is di�erentially ex-
pressed at the level described by the alternative hypothesis H1. Thus, as discussed earlier, the
hypothesis testing framework abstracts from the reality of genes having varying degrees of
di�erential expression. The test declaration (decision) is either that the gene is di�erentially
expressed (H0 rejected) or that it is unexpressed (H0 accepted). Thus, there are four possible
test outcomes for each gene corresponding to the four combinations of true hypothesis and
test declaration.
The total number of genes being tested is G with G1 and G0 being the numbers that are

truly expressed and unexpressed, respectively. The counts of the four test outcomes are shown
by the entries A0; A1; R0 and R1 in the multiple testing framework. These counts are random
variables in advance of the analysis of the study data. The counts A0 and A1 are the numbers
of true and false negatives (that is, true and false declarations that genes are not di�erentially
expressed). The counts R1 and R0 are the numbers of true and false positives (that is, true
and false declarations of genes being di�erentially expressed). The totals, A and R, are the
numbers of genes that the study declares are unexpressed (H0 accepted) and are di�erentially
expressed (H0 rejected), respectively.
The framework shows that proportions p0 =G0=G and p1 =G1=G=1 − p0 of the genes

are truly unexpressed and expressed, respectively. The counts G0 and G1 and, hence, the
proportions p0 and p1, are generally unknown. As we show later, their values must be
anticipated prior to the conduct of a study. Usually, G0 will be much larger than G1 and,
indeed, in some studies it may be uncertain if any gene is actually di�erentially expressed
(that is, it may be uncertain if G1¿0).
We index the genes for which H0 and H1 hold by the sets G0 and G1, respectively. We must

remember, of course, that the memberships of these index sets are unknown because we do
not know in advance if any given gene is di�erentially expressed or not. The test outcomes
counted by R0 are false positives re�ecting type I errors. We use �0 to denote the probability
of a type I error for any single gene in the index set G0 under the selected decision rule.
Thus,

�0 = probability of type I error for any gene=E(R0)=G0 (2)

Likewise, the test outcomes counted by A1 are false negatives re�ecting type II errors. We
use �1 to denote the probability of a type II error for any single gene in the index set G1
under the decision rule, that is

�1 = probability of type II error for any gene=E(A1)=G1 (3)
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The power of any hypothesis test is de�ned as the probability of concluding H1 when, in
fact, H1 is true. In the context of multiple testing, power is de�ned as the expected proportion
of truly expressed genes that are correctly declared as expressed, that is

power =
expected number declared expressed
actual number truly expressed

=
E(R1)
G1

= 1− �1 (4)

Another related performance measure in multiple testing is the false discovery rate or FDR
for short, proposed by Benjamini and Hochberg [8]. This measure refers to the expected
proportion of falsely rejected null hypotheses in multiple tests. With reference to the notation
in the multiple testing framework, the FDR is de�ned as the expected value E(R0=R), with
the ratio R0=R taken as 0 if R=0.

FDR = E
(
R0
R

)
(5)

In the context of microarrays, FDR is the expected proportion of declared expressed genes
that are actually unexpressed. The FDR will be considered in our discussion of a Bayesian
perspective on power in Section 5.

3.2. Test outcome dependencies

The vector estimates ˆ
g may be probabilistically dependent for di�erent genes in the same

microarray study. This implies that test outcomes for di�erent genes may be probabilistically
dependent. For example, a subarray of spots on a microarray slide may share an excess of
�uorescence because of contamination of the slide. Careful modelling of such e�ects can
reduce dependencies if they are anticipated. Delongchamp et al. [9], for instance, suggest
segmentation of an array into subarrays to account for the e�ects of irregular areas of an
array slide that they describe as ‘splotches’. We wish to emphasize in our discussion of
dependence that we are not discussing biological dependencies of di�erential expression levels
among genes (that is, co-regulation). These kinds of dependencies are certainly going to be
present in every microarray study. For example, H1 may be true for a group of genes because
they are di�erentially expressed together under given experimental conditions. The focus of
our concern is whether estimation errors in the components of ˆg, representing departures
between observed and true values, are intercorrelated among genes. The summary measures
Vg for the a�ected genes and, hence, their test outcomes (H0 or H1) will then re�ect this
dependence in estimation errors. We can envisage practical cases where dependence may be
a major concern and others where it may be minor.
Given the potential for some dependence of the errors in the vector estimates ˆg, even after

careful modelling of e�ects, we consider two di�erent ways to proceed. If the dependency
is judged to be substantial or we wish to be conservative in the control of false positives,
we may adopt a Bonferroni approach, which we describe shortly. On the other hand, if the
dependency is judged to be insigni�cant we may wish to calculate power or sample size on
the assumption that the vector estimates are mutually independent.

3.3. Family type I error probability and the expected number of false positives

There are several ways of specifying the desired control over type I errors in the planning
context of multiple testing. We consider two ways: (i) a speci�cation of the family type I
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error probability; (ii) a speci�cation of the expected number of false positives. The �rst
speci�cation refers to the probability of producing one or more false positives for genes in
index set G0, which we denote by �F. Thus, in the notation of the preceding multiple testing
framework, we have

�F = family type I error probability =P(R0¿0) (6)

The second speci�cation refers to the expected number of genes in index set G0 for which
H0 is incorrectly rejected, that is, the quantity E(R0). In the following development, we show
the connection between the type I error risk for an individual test, denoted earlier by �0, and
the multiple testing control quantities �F and E(R0).
We �rst de�ne an acceptance interval A for the summary statistic Vg that gives the desired

�0 risk for a test on a single gene. Speci�cally, we wish to use the following decision rule
to judge whether gene g is di�erentially expressed or not:

If vg ∈A then conclude H0; otherwise conclude H1 (7)

Under the null hypothesis H0, summary measure Vg for any single gene g will fall in acceptance
interval A with the following probability.

P(Vg ∈A)=
∫
A

f0(v) dv=1− �0 for each gene g∈G0 (8)

As we demonstrate later, we can use (8) to calculate A from knowledge of the form of the
null PDF f0(v). Interval A is chosen to be the shortest among those intervals satisfying (8).
We now describe two testing approaches, depending on whether the estimation errors in ˆ

g

are independent or not. We refer to these as the Sidak and Bonferroni approaches, respectively.

3.3.1. Independent estimation errors: the Sidak approach. Under the assumption of indepen-
dence, the family type I error probability �F and the type I error probability for an individual
test �0 are connected as follows for the gene index set G0:

P(R0 = 0)= (1− �0)G0 = 1− �F (9)

In most microarray studies, G0 is large and, hence, even a small speci�cation for �0 will
translate into a large value for the family type I error probability �F. In addition, in most
studies it is uncertain what number of genes are unexpressed. In this situation, an investigator
may wish to assume that all genes are unexpressed (so G0 =G) and change the exponent in
(9) from G0 to G.
With independence, the random variable R0 follows a binomial distribution with parameters

G0 and �0. Thus, the expectation E(R0) equals G0�0. When G0 is reasonably large and �0 is
small, the number of false positives R0 that will arise under the assumption of independence
will follow an approximate Poisson distribution with mean parameter

E(R0)=G0�0≈ − ln(1− �F) (10)

For example, if the family type I error �F is 0:20 and G0 is large, the Poisson mean is
E(R0)=− ln(0:80)=0:223. In this case, the probability of experiencing no false positive
is exp(−0:223)=0:80. The probability of exactly one false positive is 0:223 exp(−0:223)=
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0:223(0:80)=0:18. The probability of experiencing two or more false positives is therefore
0:02. Because of the direct connection between �F and the mean E(R0) in this case, either
value may be used to specify the desired control over the family type I error risk.
As another example, if an investigator feels that expecting 2.5 false positives is tolerable

then this speci�cation implies that E(R0)=− ln(1− �F)=2:5 and, hence, a family type I
error probability of �F =1 − exp(−2:5)=0:918. This �F value may appear very high. The
illustration reminds us, however, that a large value of �F may be reasonable in microarray
studies where a few false positives among thousands of genes must be tolerated in order to
avoid missing many truly expressed genes (that is, to avoid false negatives). The design of a
microarray study involves a careful balancing of costs of false positives and false negatives.
The connection between �F and �0 in this last example is

�0 =
E(R0)
G0

≈ − ln(1− �F)
G0

(11)

For instance, if G0 happens to equal 5000 then, �0 = 2:5=5000=−[ln(1− 0:918)]=5000=
0:00050.
Under the independence approach represented by rule (9), we may wish to focus more

directly on the number of false positives by using the following property of order statistics
for simple random samples: the k1th lowest and k2th highest order statistics of the summary
measures vg for genes g∈G0 span an expected combined tail area of k=(G0+1) where k= k1+
k2. This property may be used to set the acceptance interval A based on the anticipated values
of extreme order statistics under the null PDF f0(v). Speci�cally, the acceptance interval in
(8) may be de�ned by the following speci�cation:

�0 =
k

G0 + 1
(12)

Substitution of (12) into (9) gives the following implied value for the family type I error
probability for this rule:

�F =1−
(
1− k

G0 + 1

)G0
≈ [1− exp(−k)] for large G0 (13)

The mean number of false positives for this rule is approximately k=E(R0)= − ln(1− �F).
Although the form of (12) is motivated by the theory of order statistics in which k is a whole
number, (12) and (13) can be used with fractional values of k.

3.3.2. Dependent estimation errors: the Bonferroni procedure. The Bonferroni procedure is
widely used in statistics for error control where simultaneous inferences are being made. The
procedure makes use of the Bonferroni probability inequality to control the family type I error
probability. The inequality holds whatever may be the extent of statistical dependence among
the estimated di�erential expression vectors ˆg of the gene set.
For this procedure, the acceptance interval in (8) may be de�ned by the following speci�-

cation:

�0 =
�F
G0

(14)
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This de�nition of the acceptance interval A guarantees that the following inequality holds for
the family type I error probability:

P

[ ⋂
g∈G0

(Vg ∈A)

]
¿1− �F (15)

Thus, the inequality in (15) assures us that the Bonferroni procedure keeps the family type I
error probability at level �F or lower. In subsequent discussion in the Bonferroni context, we
refer to �F as the family type I error probability although the inequality (15) implies that
the true error probability may be somewhat lower. We note that, for given G0 and �F, the
Bonferroni rule (14) will always choose a wider acceptance interval A than the rule based
on the independence assumption in (9).
With respect to the expected number of false positives, using the Bonferroni procedure in

(14) provides the following result:

E(R0)=G0�0 = �F (16)

It can be seen that the expected number of false positives equals the family type I error
probability in this case. Thus, necessarily, the expected number E(R0) cannot exceed one
(although the actual number R0 is not so constrained).
Unlike the independence approach discussed in the preceding section, there is no direct link

between the probability distribution for the number of false positives R0 and the family type
I error probability �F under the Bonferroni approach. The Bonferroni procedure controls the
chance of incurring one or more false positives but provides no probability statement about
how many false positives may be present if some do occur (that is, the approximate Poisson
distribution does not apply).

3.4. Family power level and the expected number of true positives

As with type I errors, we can quantify type II error control in several ways in the context
of multiple testing. We focus on two ways: (i) the family type II error probability (or,
equivalently, one minus the family power level); (ii) the expected number of true positives.
The �rst measure refers to the probability of producing one or more false negatives for genes
in index set G1, which we denote by �F. Thus, in the notation of the preceding multiple
testing framework, we have

�F = family type II error probability =P(A1¿0) (17)

The corresponding family power level is then 1−�F. The second measure refers to the expected
number of genes in index set G1 that are correctly declared as di�erentially expressed, that
is, the quantity E(R1). In the following development, we show the connection between the
type II error risk for an individual test, denoted earlier by �1, and the values of the multiple
testing quantities �F and E(R1).
The power of the test for any single gene that is di�erentially expressed at the level

de�ned in H1 equals 1 − �1. This declaration is equivalent to having the summary measure
Vg= h( ˆg) for the gene in question fall outside the acceptance interval A. We denote this
rejection interval by the complement Ac. The power for a single di�erentially expressed gene
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is therefore given by

P(Vg ∈Ac)=
∫
Ac
f1(v) dv=1− �1 for any gene g∈G1 (18)

In essence, therefore, 1 − �1 is �xed by the rejection interval which, in turn, is �xed by
the speci�ed control on the family type I error risk and the speci�cation for the alternative
hypothesis H1. Our use of PDF f1(v) for this power calculation means that we are examining
the power for any and all di�erential gene expression target vectors d whose estimates map
into the same random variable Vg= h( ˆg) having the PDF f1(v).
As with type I errors, we encounter the Sidak and Bonferroni formulae for power, depend-

ing on whether estimation errors in ˆ
g are independent or not. We can now abbreviate the

presentation because the underlying logic is clear from the earlier development.

3.4.1. Independent estimation errors: the Sidak approach. The anticipated count G1 when
taken together with the power level 1 − �1 for an individual test can be used to calculate
either measure of family type II error control. Under the assumption of independence, the
family type II error probability �F and the type II error probability for an individual test �1
are connected as follows for the gene index set G1:

P(A1 = 0)= (1− �1)G1 = 1− �F (19)

Also, under independence, the random variable R1 follows a binomial distribution with pa-
rameters G1 and 1− �1. Thus, the expected number of true positives is given by

E(R1)=G1(1− �1) (20)

In many studies, it is uncertain what number of genes G1 will be di�erentially expressed, if
any. In this situation, an investigator may wish to consider power only for the case of an
isolated gene that is di�erentially expressed (so G1 = 1). In this case, 1−�F =1−�1 =E(R1).
To illustrate these power calculations numerically, consider a microarray study for which G1

is anticipated to be 50 genes and for which 1−�1 = 0:99. In this case, 1−�F = (0:99)50 =0:605.
Observe how high the power level must be for a single gene in index set G1, namely 0:99,
in order to have even a moderate probability of discovering all 50 di�erentially expressed
genes (0.605). In this same situation, the expected number of true positives among the 50
di�erentially expressed genes would be G1(1− �1)=50(0:99)=49:5. In other words, 99 per
cent of the truly expressed genes are expected to be declared as such.

3.4.2. Dependent estimation errors: the Bonferroni procedure. Under an assumption of de-
pendence for the estimated di�erential expression vectors, recourse to the Bonferroni inequality
gives the following speci�cation for the family power level 1− �F as a function of the level
of �1 for a single test:

1− �F¿max(0; 1−G1�1) (21)

As 1−�F must be non-negative, a minimum of zero is imposed in (21). Thus, the Bonferroni
inequality gives us a lower bound on the family power level.
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The expected number of true positives under the Bonferroni approach is given by

E(R1)=G1(1− �1) (22)

For the previous numerical example, where G1 = 50 and 1 − �1 = 0:99, the lower bound
on the family power level is 1 − 50(0:01)=0:50. The expected number of true positives is
E(R1)=50(0:99)=49:5. Thus, again, 99 per cent of the truly expressed genes are expected
to be declared as such. As is the case with false positives, there is no direct link between
the family type II error probability �F and the probability distribution for the number of true
positives R1 under dependence. The Bonferroni procedure controls the chance of incurring one
or more false negatives but provides no probability statement about how many false negatives
may be present if some do occur.

3.5. Relation of error control in the planning stage to multiple testing for observed data

We now discuss the relation between speci�cations for type I and type II error controls at the
planning stage of a microarray study before the microarray experiments are conducted and the
implementation algorithms used at the actual testing stage (for example, step-down p-values)
after the gene expression data have been collected.
For planning purposes, our methodology posits the index sets G0 and G1 for unexpressed

and di�erentially expressed genes, respectively. Although the planning does not identify the
members of each set, it does specify the cardinality of each. In this statistical setting, test
implementation algorithms seek to maximize the power of detecting which genes are truly in
the index set G1 while still controlling either the family type I error probability or a related
quantity, such as the false discovery rate (discussed later in Section 5).
Many approaches have been proposed for actual test implementation once the microarray

data are in hand. For example, step-down p-value algorithms and methods for controlling the
false discovery rate have been widely adopted for error control in microarray studies, see, for
instance, Dudoit et al. [6] and Efron et al. [7]. Observed p-values for the G hypothesis tests
in a microarray study will be derived from the null PDF f0(v) or its estimate, evaluated at the
respective realizations vg; g=1; : : : ; G. The observed p-values, say p1; : : : ; pG, will vary from
gene to gene because of inherent sampling variability and also because the null hypothesis
may hold for some genes but not for others. The information content of the observed p-values
is used in these testing procedures to assign genes to either the index set G0 or the index set
G1 without knowing the size of either set. These approaches exploit information in the data
themselves (speci�cally, the observed p-values) and, hence, are data-dependent. In contrast,
in planning for power and sample size, we must anticipate the sizes of these two index sets,
and control the two types of errors accordingly, without the bene�t of having the observed
p-values themselves. The p-values derived from the actual observed microarray data not only
allow classi�cation of individual genes as di�erentially expressed or not but also provide a
report card on the study plan and whether its speci�cations were reasonable or not.

4. POWER CALCULATIONS FOR DIFFERENT SUMMARY MEASURES

We now present power calculations for the two classes of functions Vg= h( ˆg) mentioned
earlier, both of which are important in microarray studies.
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4.1. Designs with linear summary of di�erential expression

Consider a situation where the summary measure Vg is a linear combination of di�erential
expression estimates Îgc of the following form:

Vg= h( ˆg)= [′ ˆg=
∑
c∈C
�cÎgc (23)

where [′=(�1; : : : ; �C) is a vector of speci�ed coe�cients. Examples of such linear combi-
nations include any single di�erential expression estimate, say Îg1, or any di�erence of such
estimates, say Îg1 − Îg2. Frequently the linear combination of interest will be a contrast of
interaction estimates that re�ects, for example, the di�erence between treatment and control
conditions.
As discussed earlier, we may assume that the vector ˆg has an approximate multivariate

normal distribution with mean zero under the null hypothesis and covariance matrix �. This
assumption is reasonable, �rst, because of the application of the central limit theorem in
deriving individual estimates Îgc from repeated readings and, second, from a further application
of the central limit theorem where the linear combination in (23) involves further averaging
of the individual estimates. It then follows from this normality assumption that the null PDF
f0(v) is an approximate normal distribution with mean zero and null variance

�20 = var(Vg|H0)= [′�[ (24)

Under the alternative hypothesis H1, we assume that the Îgc have the same multivariate normal
distribution but with mean d. In other words, that the null distribution is simply translated
to a new mean position. In this case, the summary measure Vg has an approximate normal
PDF f1(v) with the same variance �20 and mean parameter

�1 =E(Vg|H1)= [′ d (25)

We consider only linear combinations for which �1 is non-zero.
Here are the steps for computing power:

1. Compute the null variance �20 in (24) from speci�cations for the vector [ and covariance
matrix �.

2. Compute �1 in (25) from speci�cations for the vectors [ and d.
3. Specify the family type I error risk �F or, under independence, the equivalent mean
number of false positives E(R0)≈− ln(1− �F).

The �rst step is the most di�cult because it requires some knowledge of the inherent variabil-
ity of the data in the planned microarray study. As we discuss later, this inherent variability
is intimately connected with the experimental error in the scienti�c process, the experimental
design and the number of replicates of the design used in the study.
We now present a brief numerical example of a power calculation based on the methodology

for a linear function of di�erential expression.

4.1.1. Numerical example for linear summary of di�erential expression. Consider a micro-
array study in which interest lies in the di�erence between two experimental conditions
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Figure 1. Illustration of a power calculation in the non-central normal case.

representing, say, two tissue types. Thus, di�erences in di�erential gene expression of the
form Îg1 − Îg2 are being considered. The null standard deviation for such di�erences is ex-
pected to be similar to that found in a previous study, namely, �0 = 0:35 on a log-scale with
base 2. We suppose that a di�erence of �1 = 1:40 (on a log-2 scale) is the target di�er-
ence under the alternative hypothesis. Observe that this di�erence represents a 21:40 = 2:64-
fold di�erence in gene expression and is four times the null standard deviation (that is,
�1=�0 = 1:40=0:35=4:0). The study involves a gene set of G=2100 genes. It is anticipated
that G0 = 2000 genes will show no di�erential expression, while the remaining G1 = 100
will be di�erentially expressed at the target level �1. We assume statistical independence
among the estimated di�erential expression vectors ˆ

g of the gene set. The order statis-
tic rule (12) with E(R0)= k=2 will be used for setting the acceptance interval A. It
then follows that A is de�ned by ±z�0 where z denotes the standard normal percentile
z(2000=2001)= z(0:9995)=3:2905. The resulting interval is (−1:152; 1:152) on a log-2 scale.
In making this determination of A, we have used the interval centred on zero as it is the
shortest interval. The situation is illustrated in Figure 1. Observe that the area spanned by the
acceptance interval under the null PDF in this illustration corresponds to 1999=2001=0:999
so �F =1 − (0:999)2000 =0:8648 and E(R0)=− ln(1− 0:8648)=2, as required. Finally, the
power for detecting a single di�erentially-expressed gene is given by the area under the alter-
native PDF in Figure 1, labelled 1 − �1. Reference to the standard normal distribution gives
1 − �1 = 0:761. Thus, any single gene with a 2.64-fold di�erence in expression between the
two tissue types has probability 0.761 of being classi�ed as di�erentially expressed in this
study (that is, of leading to conclusion H1). This probability is the same whether the di�erence
refers to an up- or down-regulated gene. This same power value implies that about 76 per
cent of the anticipated G1 = 100 di�erentially-expressed genes in the array will be correctly
declared as di�erentially expressed. The probability of detecting all 100 of these genes is
the family power level 1 − �F given by (19). Here that family power level is 0:761100, a
vanishingly small value.
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4.2. Designs with quadratic summary of di�erential expression

We now consider a situation where the summary measure Vg is a quadratic form. To represent
this quadratic form symbolically, we restrict vectors ˆg and d to their �rst C−1 components
and restrict matrix � to the principal submatrix de�ned by the �rst C−1 interaction parameters.
We denote these restricted forms by ˆ

g|R ; d
R and �R, respectively. These restricted forms

are required by the interaction sum constraint which makes one component of each vector
redundant. With this restricted notation, the quadratic form of interest is expressed as follows:

Vg= ˆ ′
g|R�

−1
R
ˆ
g|R (26)

We see that this measure implicitly takes account of all di�erential expression estimates and,
hence, is responding to di�erential expression in any of the C experimental conditions in
the study. Statistic Vg in (26) is larger whenever one of the interaction estimates in ˆ

g is
larger. It is therefore a comprehensive measure of di�erential gene expression. Measure Vg in
(26) can be interpreted as the squared statistical distance between the restricted interaction
estimate vector ˆg|R and the zero vector 0 speci�ed in the null hypothesis. It is also intimately
connected to the sum of squares for the set of interaction e�ects G×C in the ANOVA model.
The quadratic measure in (26) is suitable for microarray studies which examine an assort-

ment of experimental conditions with the simple aim of discovering genes that are di�erentially
expressed in any pattern among the conditions. For example, a microarray study may examine
tissues from C di�erent tumours with the aim of seeing if there are genetic di�erences among
the tumours. As another example, the experimental conditions may represent a biological sys-
tem at C di�erent time points and interest may lie in the time course of genetic change in
the system, if any. Thus, measure (26) is suited to uncovering di�erential gene expression in
a general set of experimental conditions where theory may provide no guidance about where
among the conditions the di�erential expression is likely to arise.
To apply measure (26), we assume, as before, that the estimate vector ˆg is approximately

multivariate normal with covariance matrix � and mean zero under the null hypothesis. The
theory of quadratic forms then states that Vg follows an approximate chi-square distribution
with C− 1 degrees of freedom. One degree of freedom is lost because of the interaction sum
constraint. Under the alternative hypothesis, Vg has a non-central chi-square distribution with
non-centrality parameter �1 where

�1 = d′
R �

−1
R

d
R (27)

We caution that the assumption of chi-square and non-central chi-square distributions for
quadratic measure Vg in (26) is a little more sensitive to the assumed normality of the vectors
ˆ
g than is the case with the linear summary measure (23). The reason is that the quadratic
measure does not have the bene�t of a secondary application of the central limit theorem
from taking a linear combination of estimates.
The non-central chi-square PDF can be used in (18) to calculate the power of the microarray

study. The steps for computing power are as follows:

1. Compute the non-centrality parameter �1 in (27) from speci�cations for vector d and
covariance matrix �.
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Figure 2. Illustration of a power calculation in the non-central chi square case.

2. Specify the family type I error risk �F or, under independence, the equivalent mean
number of false positives E(R0)≈− ln(1− �F).

As before, the �rst step is the most di�cult because it requires some knowledge of the inherent
variability of the data in the planned microarray study, which depends on the experimental
error in the scienti�c process, the experimental design and the number of replicates of the
design used in the study.

4.2.1. Numerical example for quadratic summary of di�erential expression. As a brief nu-
merical example of a power calculation for the quadratic summary measure, assume that the
gene set contains G=2100 genes and that the study includes C=4 experimental conditions.
Furthermore, assume statistical independence among the estimated di�erential expression vec-
tors ˆg of the gene set. We suppose that the non-centrality parameter �1 under the alternative
hypothesis is calculated from (27) and equals 20.0. It is anticipated that G0 = 2000 of the 2100
genes will not be di�erentially expressed and G1 = 100 genes will be di�erentially expressed at
the target level �1. We will use the order statistic rule (12) with E(R0)= k=1 to set the accep-
tance interval A. It then follows that A is de�ned by 	23(2000=2001)= 	

2
3(0:9995)=17:73.

The resulting acceptance interval A under the null PDF f0(v) is (0; 17:73) as shown in
Figure 2. Finally, the power of this microarray study to detect a single di�erentially-expressed
gene is given by the area under the alternative PDF f1(v), labelled 1−�1 in Figure 2. Refer-
ence to the relevant non-central chi-square distribution gives this power value as 1−�1 = 0:689.
Thus, 69 per cent of the 100 di�erentially expressed genes in the index set G1 are expected
to be detected by this study.

4.3. Relation to methods based on t- and F-statistics

It can be seen that the preceding test methodology and power calculations use neither the
observed mean square error (MSE) nor t- and F-statistics at the level of the individual gene.
(Recall that MSE enters the denominator of both t- and F-statistics.) Our experience with
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microarray data sets has made us cautious about assuming a normal error term for the ANOVA
model. We have found that data anomalies and non-normal features of the error term, which
are frequently encountered in microarray data, make MSE values more susceptible to distortion
than the ANOVA interaction estimates ˆ

g upon which our approach relies. Moreover, the
problem is aggravated by the fact that many microarray experimental designs provide few
degrees of freedom for the error term at the individual gene level. Other investigators have
noted similar problems and chosen alternative strategies for dealing with them. Some, such as
Dudoit et al. [6], are successful in using tests based on t- and F-statistics. Some have used
permutation tests to avoid assumptions about the error distribution, although this approach
does depend on having reasonably large degrees of freedom at the individual gene level.
Another strategy is adopted in Efron et al. [7] where a variance-o�set is used to improve
reliability. They compute expression scores of the form �Di=(a0 + Si) for each gene i. Here �Di
and Si are the mean and standard deviation of expression di�erences between treatment and
control and a0 is a �xed quantity (the 90th percentile of all Si values in this instance). The
constant a0 helps to stabilize the scores. They note that setting a0 = 0 (that is, omitting the
constant) is a ‘disasterous choice’ in their application (Reference [7] p. 1156).

5. A BAYESIAN PERSPECTIVE ON POWER AND SAMPLE SIZE

Lee et al. [3, 4] and Efron et al. [7] describe a mixture model for di�erential gene expression
that provides a Bayesian posterior probability for the event that a given gene is di�erentially
expressed. This mixture model has a useful interpretation in terms of our study of power and
sample size.
In the multiple testing framework presented earlier, we de�ned p1 and its complement

p0 = 1 − p1 as the respective probabilities that a randomly selected gene would be di�eren-
tially expressed (H1) or not (H0). We now take these probabilities as prior probabilities in
a Bayesian model for the summary measure of gene expression Vg for gene g. The marginal
PDF for the summary statistic Vg under this model is

f(v)=p0f0(v) + p1f1(v) (28)

This model simpli�es reality in two respects. First, it assumes that the prior probabilities are
the same for all genes, although this assumption can be relaxed easily. Second, it assumes
that if a gene is di�erentially expressed then it is expressed at the target level speci�ed in H1.
From Bayes theorem, the posterior probabilities for any gene g having summary statistic

Vg= vg can be calculated from the components of the mixture model (28) as follows:

P(H0|vg)= p0f0(vg)f(vg)
; P(H1|vg)= p1f1(vg)f(vg)

(29)

The posterior probabilities P(H1|vg) and P(H0|vg) are the respective probabilities that gene
g is truly di�erentially expressed or not, given its summary measure has outcome vg.

5.1. Connection to local true and false discovery rates

For some classi�cation cut-o� value v∗, de�ned by an appropriate balancing of misclassi�-
cation costs, each gene g can be declared as di�erentially expressed or not, depending on
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whether vg¿v∗ or not. Probability P(H1|vg) is then the probability of a correct declaration of
di�erential expression when an expression reading of vg¿v∗ is presented.
Efron et al. [7] interpret the posterior probability P(H0|vg) in (29) as the false discovery

rate for all genes sharing summary measure vg, for given vg¿v∗. As P(H0|vg) describes the
FDR in the locality of vg, Efron et al. [7] refer to it as the local false discovery rate or
local FDR for short. By analogy, the complementary posterior probability P(H1|vg) might be
interpreted as a local true discovery rate or local TDR. The local TDR is the proportion of
truly expressed genes among those genes sharing summary measure vg¿v∗.

5.2. Representative local true discovery rate

A representative value of the local TDR can be chosen to summarize the ability of a microarray
study to correctly classify genes declared to be di�erentially expressed. As a representative
value of the posterior probability P(H1|vg), we suggest replacing vg by the corresponding
parameter h( d) under the alternative hypothesis H1. The resulting probability is

P[H1|h( d)]=
p1f1[h( d)]
f[h( d)]

(30)

When h is the linear function in (25), parameter h( d) is �1. When h is the quadratic function
in (27), parameter h( d) corresponds to �1.
The representative local TDR that we have just de�ned is not directly comparable to the

power level of a test although it does convey closely related information about the ability of a
microarray study to correctly identify genes that are truly di�erentially expressed. As de�ned
at the outset of the paper, classical power refers to the conditional probability of declaring
a gene as di�erentially expressed when, in fact, that is true. In this Bayesian context, local
TDR refers to the conditional probability that a gene is truly di�erentially expressed when,
in fact, it has been declared as expressed by the test procedure. The conditioning events of
these two probabilities are reversed in the classical and Bayesian contexts.

5.3. Numerical example

To give a numerical example of local TDR and FDR, we consider the demonstration depicted
in Section 4.2 and Figure 2. The gene set contains G=2100 genes. Four experimental con-
ditions are under study, so C=4. It is anticipated that G0 = 2000 of the 2100 genes will not
be di�erentially expressed and G1 = 100 genes will be di�erentially expressed. These counts
correspond to prior probabilities of p0 = 0:952 and p1 = 0:048. The non-centrality parameter
�1 has been speci�ed as 20 under H1. Setting vg equal to �1 = 20, the probability densities
f0(20) and f1(20) for central and non-central chi-square distributions with C − 1=3 degrees
of freedom are calculated as 0:00008096 and 0:004457, respectively. The marginal probabil-
ity density f(20) is then calculated from (28) as 0:0002893. Finally, the desired posterior
probabilities in (30) are calculated as 0:266 and 0:734, respectively. Thus, for example, the
probability that H1 is true rises from a prior level of 0:048 to a posterior level of 0:734 if the
gene has an observed di�erential expression level vg equal to �1 = 20. Assuming vg=20 is
above the classi�cation cut-o� v∗, these respective probabilities are the local FDR and TDR.
In other words, among genes having observed di�erential expression at level vg=20, about
73 per cent will be truly di�erentially expressed and 27 per cent will not.
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6. APPLICATIONS TO SOME STANDARD MICROARRAY DESIGNS

We now show applications of the power methodology to some standard microarray designs
and present representative sample size and power tables for these designs.

6.1. Matched-pairs design

Consider a microarray study with n matched pairs of treatment and control conditions. For
example, in a study of liposarcoma, each treatment–control pair may be liposarcoma tissue and
normal fat tissue taken from a matched pair of patients. Thus, there are C=2n experimental
conditions in total. To be explicit, we assume that indices c=1; : : : ; n denote the treatment
conditions and c= n+1; : : : ; 2n=C denote the matching control conditions. The assumption is
made that a given gene g either has no di�erence in log-expression between the treatment and
control conditions (null hypothesis H0) or has a di�erence in log-expression equal to some
non-zero value �1 (alternative hypothesis H1). This assumption implies that the interaction
parameters Igc have the following values under the alternative hypothesis:

Igc=
{
�1=2 for c=1; : : : ; n treatment conditions
−�1=2 for c= n+ 1; : : : ; 2n control conditions (31)

Observe that these parameter values sum to zero as required by the interaction sum constraint.
We illustrate the methodology for a linear function of di�erential gene expression. The

linear combination of interest in this context involves a contrast of gene expression under
treatment and control conditions. We choose the convenient de�nition

[′=(1=n; : : : ; 1=n;−1=n; : : : ;−1=n)
where there are n coe�cients of each sign. Thus, from (25) and (24), we have

�1 = E(Vg|H1)=�1 (32)

�20 = var(Vg|H0)=�2D=n (33)

Here �2D signi�es the variance of the di�erence in log-expression between treatment and control
conditions in a matched pair.

6.1.1. Sample size table for matched-pairs design. Table I(a) gives the number of matched
treatment–control pairs n required to achieve a speci�ed individual power level 1 − �1 for
the experimental design we have just described. The calculations for the table assume that
the estimated di�erential expression vectors ˆ

g are mutually independent across genes. The
table is entered based on the speci�ed mean number of false positives E(R0), ratio |�1|=�D,
anticipated number of unexpressed genes G0 and desired individual power level 1− �1. If G0
is expected to be similar to the total gene count G, the table could be entered using G without
introducing great error. To conserve space, only two individual power levels are o�ered in
the table, 0:90 and 0:99. The sample size shown in the table is the smallest whole number
that will yield the speci�ed power. The total number of experimental conditions C is double
the entry in the table, that is, C=2n. Observe that the ratio |�1|=�D can be interpreted as
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Table I. Sample size for matched-pairs designs and completely randomized designs
with a linear summary of di�erential expression. The number listed in a cell is
the sample size (n) required in the treatment and control groups to yield the
speci�ed individual power level 1− �1, which is the expected proportion of truly
expressed genes that will be correctly declared as expressed by the tests. The
requisite total sample size is C=2n. Gene number G0 denotes the anticipated

number of unexpressed genes involved in the experiment.

(a) Sidak approach: estimated di�erential expression vectors ˆg are assumed to be
mutually independent across genes. E(R0) denotes the mean number of false positives.
The family power level 1 − �F and expected number of true positives E(R1) can be
calculated from 1− �1 using (19) and (20).

Mean number of false positives

E(R0)= 1 E(R0)= 2 E(R0)= 3

Distance |�1|=�D Distance |�1|=�D Distance |�1|=�D
1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

Genes G0 Power= proportion correctly declared as expressed = 0:90
500 20 9 5 4 18 8 5 3 17 8 5 3
1000 21 10 6 4 20 9 5 4 19 9 5 3
2000 23 11 6 4 21 10 6 4 20 9 5 4
8000 27 12 7 5 25 11 7 4 24 11 6 4

Genes G0 Power= proportion correctly declared as expressed = 0:99
500 30 14 8 5 28 13 7 5 26 12 7 5
1000 32 15 8 6 30 14 8 5 29 13 8 5
2000 34 15 9 6 32 15 8 6 31 14 8 5
8000 38 17 10 7 36 16 9 6 35 16 9 6

(b) Bonferroni approach: estimated di�erential expression vectors ˆg may be dependent
across genes. Value �F denotes the family type I error probability for the gene set.
A lower bound on the family power level 1 − �F and the expected number of true
positives E(R1) can be calculated from 1− �1 using (21) and (22).

Family type I error probability
�F = 0:01 �F = 0:10 �F = 0:50

Distance |�1|=�D Distance |�1|=�D Distance |�1|=�D
1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

Genes G0 Power= proportion correctly declared as expressed = 0:90
500 31 14 8 5 26 12 7 5 21 10 6 4
1000 33 15 9 6 27 12 7 5 23 11 6 4
2000 35 16 9 6 29 13 8 5 25 11 7 4
8000 38 17 10 7 32 15 8 6 28 13 7 5

Genes G0 Power= proportion correctly declared as expressed = 0:99
500 44 20 11 7 37 17 10 6 32 15 8 6
1000 46 21 12 8 39 18 10 7 34 15 9 6
2000 48 22 12 8 41 19 11 7 36 16 9 6
8000 52 23 13 9 45 20 12 8 41 18 11 7
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the statistical distance (that is, the number of standard deviations) between the treatment and
control log-expression levels under the alternative hypothesis. An examination of Table I(a)
shows that the required sample size is most sensitive to the ratio |�1|=�D and the required
power level and least sensitive to the mean number of false positives E(R0). The required
sample size is also moderately sensitive to the number of unexpressed genes G0 because of
the e�ect of controlling for simultaneous inferences. The practical lesson to be drawn from
this last observation is that the gene set G0 should be kept as small as possible, consistent with
the scienti�c objective of the microarray study. Inclusion of super�uous genes in the analysis,
possibly for reasons of data exploration or data mining, will have a cost in terms of power
loss. Of course, housekeeping genes and genes included on the arrays as positive controls
may be used for diagnostic and quality-control checks but do not enter the main analysis.
Such monitoring genes should not be counted in the number G0 used in power calculations.
As one example of a reference to Table I(a), consider a study for which G0 = 2000 un-

expressed genes. The investigator wishes to control the mean number of false positives at
E(R0)=1:0 and to detect a twofold di�erence between treatment and control conditions with
an individual power level of 0:90. Previous studies by the investigator may suggest that the
standard deviation of gene expression di�erences in matched pairs will be about �D =0:5 on
a log-2 scale. The twofold di�erence represents a value of log2(2)=1:00 for |�1| on a log-2
scale. Thus, the ratio |�1|=�D equals 1:00=0:5=2:0. Reference to Table I(a) for these spec-
i�cations shows that n=6. Thus, six pairs of treatment and control conditions are required
in the study. The speci�ed individual power level of 0:90 indicates that 90 per cent of the
di�erentially expressed genes are expected to be discovered.
Should an investigator wish to avoid the assumption that the estimated di�erential ex-

pression vectors ˆg are mutually independent across genes and use the Bonferroni approach,
then the required sample sizes are those shown in Table I(b). As shown in (16), we have
E(R0)=G0�0 = �F in the Bonferroni approach. Thus, the expected number of false posi-
tives is necessarily smaller than 1 and, hence, cannot be controlled at an arbitrary level.
As a consequence, Table I(b) is entered with reference to the desired level of the fam-
ily type I error probability �F. Three values of �F are displayed in the abbreviated table,
namely, 0.01, 0.10 and 0.50. As �F approaches 1, the sample sizes approach those shown for
E(R0)=1 in Table I(a). To illustrate Table I(b), consider the situation where �F is set at
0:10; G0 = 2000; |�1|=�D =2:0 and an individual power level of 0.90 is desired. In this case,
Table I(b) indicates that eight pairs of treatment and control conditions are required in the
study.

6.2. Completely randomized design

Tables I(a) and I(b) can also be used for a completely randomized design in which there
are equal numbers of treatment and control conditions but they are not matched pairs. In
this case, the variance of the di�erence in log-expression between treatment and control is
given by �2D =2�

2, where �2 is the experimental error variance of gene log-expression. By
replacing ratio |�1|=�D by |�1|=√2�, the sample sizes in Tables I(a) and I(b) can be used
for a completely randomized design. The bene�t of matching pairs of treatment and control
conditions is indicated by the extend to which �2D is smaller than 2�

2.
To illustrate, suppose � is anticipated to be 0:40 in a completely randomized design. Further-

more, suppose that �1 =1:00; E(R0)=1:0; G0 = 2000 and the desired individual power level
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is 0.90 as speci�ed before. Then, reference is made to the ratio |�1|=√2�=1:00=√2(0:40)=
1:77 in the table. From Table I(a), the required sample size can be seen to be somewhere
between 6 and 11. An exact calculation gives n=8 (calculations not shown).

6.3. Isolated-e�ect design

Many microarray studies anticipate the presence of di�erential gene expression somewhere
among the C experimental conditions but the investigator does not know in advance where
the di�erential expression will appear among the C conditions. The science underpinning these
studies is often at a formative stage so they are essentially exploratory in nature. The quadratic
summary measure is useful in this kind of case.
Consider a microarray study in which one experimental condition, which we refer to as

the distinguished condition, exhibits di�erential expression for a gene g relative to all other
C − 1 conditions under study. The latter C − 1 conditions are assumed to be uniform in their
gene expression. Without loss of generality, we take this distinguished condition as c=1 and
assume that the target di�erence in expression between condition c=1 and all other conditions
is �1 on the log-intensity scale. This assumption implies that the interaction parameters Igc
have the following values under the alternative hypothesis H1:

Igc=
{
�1(C − 1)=C for c=1 distinguished condition
−�1=C for c=2; : : : ; C all other conditions (34)

Observe that these parameter values sum to zero as required by the interaction sum constraint.
The assumption that the di�erential gene expression occurs only in one isolated condition is
conservative in the sense that it poses the most challenging situation for detection by the
investigator. The di�erential expression in question may be either an up- or down-regulation,
depending on the sign of the di�erence �1. Finally, we assume that the microarray study is
replicated r times. Hence, with this design, there are rC readings on each gene.
We now apply the quadratic summary measure of di�erential gene expression to this

isolated-e�ect design. If the error variance of the ANOVA model is denoted by �2 then
the non-centrality parameter (27) for the quadratic summary measure has the following form
for this design (derivation not shown)

�1 = d′
R �

−1
R

d
R =

r(C − 1)
C

(
�1

�

)2
(35)

We note in (35) that the non-centrality parameter depends strongly on the number of repli-
cates r and the statistical distance between the log-expression levels for the distinguished
condition and all other conditions, as measured by the ratio |�1|=�. The e�ect of the number
of conditions C is less pronounced as the ratio (C − 1)=C approaches 1 as C increases.

6.3.1. Power table for isolated-e�ect design. Table II shows individual power levels 1− �1
for this design, expressed as percentages. Quantity E(R0) denotes the mean number of false
positives. Parameter �1 is the non-centrality parameter for this design given in (35) and C
denotes the number of experimental conditions. Gene number G0 is the anticipated number
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Table II. Power table for isolated-e�ect design with quadratic summary of
di�erential expression. The power calculation is based on the quadratic sum-
mary function for the isolated-e�ect design. The number listed in each cell
is the individual power level 1− �1 (in per cent); this value is the expected
percentage of truly expressed genes that will be correctly declared as ex-
pressed by the tests. The family power level 1 − �F and expected number
of true positives E(R1) can be calculated from 1− �1 using (19) and (20).

Mean number of false positives

E(R0)= 1 E(R0)= 2 E(R0)= 3

Non-centrality �1 Non-centrality �1 Non-centrality �1
20 25 30 35 20 25 30 35 20 25 30 35

Genes G0 Number of conditions C = 5
500 76 89 95 98 82 92 97 99 85 94 98 99
1000 70 85 93 97 76 89 95 98 80 91 96 99
2000 63 80 90 96 70 85 93 97 74 87 95 98
8000 50 69 83 92 57 75 87 94 60 78 89 95

Genes G0 Number of conditions C = 10
500 58 76 87 94 66 81 91 96 70 85 93 97
1000 51 69 83 91 58 76 87 94 63 79 89 95
2000 44 63 78 88 51 69 83 91 55 73 85 93
8000 31 50 67 80 37 56 72 84 41 60 76 87

Genes G0 Number of conditions C = 20
500 38 55 71 82 45 63 77 87 51 68 81 89
1000 31 48 64 77 38 55 71 82 42 60 74 85
2000 24 40 57 71 31 48 64 77 35 52 68 80
8000 15 28 44 59 19 34 50 65 22 38 54 69

Quantity E(R0) denotes the mean number of false positives.
Parameter �1 is the non-centrality parameter for this design given in (35) which de-
pends strongly on the number of replicates r and the ratio |�1|=�.
Number C denotes the number of specimens or experimental conditions and, thus,
rC is the number of readings on each gene.
Gene number G0 denotes the number of unexpressed genes involved in the experi-
ment.
Estimated di�erential expression vectors ˆg are assumed to be mutually independent
across genes.

of unexpressed genes involved in the experiment. If G0 is expected to be similar to the total
gene count G, the table could be entered using G without introducing great error. Estimated
di�erential expression vectors ˆg are assumed to be mutually independent across genes.
As one example of a reference to Table II, consider a study involving C=5 experimental

conditions and G0 = 2000 unexpressed genes. Assume that the investigator wishes to control
the mean number of false positives at E(R0)=1 and to detect an isolated e�ect that amounts
to a twofold di�erence between the distinguished condition and all others. The experimental
error standard deviation is anticipated to be about �=0:40 on a log-2 scale. The twofold
di�erence represents a value of log2(2)=1:00 for |�1| on a log-2 scale. Thus, the ratio
|�1|=� equals 1:00=0:40=2:5. Six replications are to be used (r=6). For these speci�cations,
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the non-centrality parameter (35) equals

�1 = 6
(5− 1)
5

(2:5)2 =30

Thus, reference to the cell corresponding to E(R0)=1; �1 = 30; C=5 and G0 = 2000, shows
an individual power level of 1− �1 = 0:90 or 90 per cent. Thus, 90 per cent of di�erentially
expressed genes are expected to be discovered with this study design. The table can be used
iteratively to explore the e�ect on power of speci�c design changes. For example, if r=7
replications were to be used in lieu of r=6 then recalculation of the non-centrality parameter
gives �1 = 35 and the individual power level is seen to rise to 96 per cent.

7. RELATION BETWEEN POWER, REPLICATION AND STUDY DESIGN

With given speci�cations for the family type I error probability �F and the vector d in the
alternative hypothesis, the power is determined by the properties of the distribution of ˆg and,
in particular, its covariance matrix �. In Section 4 it was shown how the covariance matrix
a�ects the variance of the null PDF f0(v) in (24) and the non-centrality parameter in (27).
Both the sample size and experimental design in�uence this covariance matrix.

7.1. E�ects of replication

If a given microarray design is repeated so that there are r independent repetitions of the
design, then � for a single replicate is reduced by a multiple of 1=r. Thus, �20 in (24), for
example, is reduced by the factor 1=r and the non-centrality parameter �1 in (27) is multiplied
by r. These reductions are illustrated in the previous standard designs we used to demonstrate
the power and sample size methodology. For instance, referring to (33) for the matched-pairs
design, we can see that �2D is the variance of a single matched pair and n plays the role of the
number of replicates (the number of matched pairs in this instance). Note that �2D is reduced
by the multiplier 1=n with n replications. Similarly, with the isolated-e�ect design, the number
of replications r appears as a multiplier in the formula for the non-centrality parameter in
(35).
The replication discussed here refers to the simple repetition of a basic experiment and,

hence, we are considering a pure statistical e�ect that is captured by the number of repeti-
tions r. This parameter does not reveal if the replicated design is a sound one in terms of the
scienti�c question of interest. We trust that it is sound but do not explore this issue in the
paper.
We do want to point out, however, that the nature of replication is an important issue

in terms of the overall study plan. Contrast the following two situations. First, imagine an
experiment in which a single small tissue fragment is cut from a tumour core and then used to
prepare six arrays. Next, imagine an alternative experiment in which six small tissue fragments
are cut from six di�erent regions of the same tumour in a spatially randomized fashion and
then used to prepare six arrays, one array being prepared from each of the tissue fragments.
Both imaginary designs yield six arrays of data. The �rst design allows inferences to be
made only about the single core tissue fragment based on a sample of size six. The ANOVA
model for this design describes the population of all arrays that could be constructed from this
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single tissue fragment. The second design allows inferences about the whole tumour based on
a sample of size six. The ANOVA model for this design describes the population of all arrays
that could be prepared from the whole tumour. The respective sets of inferences clearly relate
to di�erent biological populations (the single tumour core fragment and the whole tumour,
respectively). Both designs involve six replications (r=6) but the replications have di�erent
elemental designs. The variance structures of the two designs will di�er, of course, making
them essentially incommensurate. The method of calculating power, however, based on the
two designs follows the logic we explained in the preceding paragraph. The choice of design
here depends on the target population, is it the single core tissue fragment or the whole tumour
that is of scienti�c interest to the investigator.

7.2. Controlling sources of variability

The choice of experimental design, as opposed to simple replication, has a more complicated
in�uence on power. A good design will be one that takes account of important sources of
variability in the microarray study and reduces the experimental error variance of the expres-
sion data. Kerr and Churchill [1], for example, discuss a number of alternative experimental
designs for microarray studies that aim to be more e�cient. Schuchhardt et al. [10] describe
some of the many sources of variability in microarray studies including, among others, the
probe, target and array preparation, hybridization process, background and overshining e�ects,
and e�ects of image processing. Experience with di�erent designs will give some indication
of the correlation structure and the magnitudes of variance parameters that can be expected
in covariance matrix �. These expectations, in turn, can be used to compute the anticipated
power.
To give a concrete illustration, suppose that an ANOVA model is modi�ed by adding a

main e�ect for the subarray in which each spot is located, the aim being to account for
regional variability on the surface of the slide for the microarray. Furthermore, suppose that
incorporation of this main e�ect would reduce the error variance by 15 per cent, other factors
remaining unchanged. Then, the covariance levels in � are reduced by a multiple of 0.85. The
direct e�ect of this re�nement on the numerical example in Section 4.2, for instance, is to
increase the non-centrality parameter �1 by a factor of 1=0:85=1:1765 from 20 to 23.53. This
change increases individual power level 1−�1 from 0.689 to 0.806, a worthwhile improvement.

8. ASSESSING POWER FROM MICROARRAY PILOT STUDIES

The purpose of a power calculation is to assess the ability of a proposed study design to
uncover a di�erential expression pattern having the target speci�cation d. Thus, our method-
ology should �nd its main application at the planning stage of microarray studies. As part of
this planning process, investigators sometimes wish to calculate the power of a pilot study in
order to decide how the pilot study should be expanded to a full study or to decide on the
appropriate scale for a new and related study. Power calculation for a pilot study involves an
application of the same methodology but with the bene�t of having estimates of relevant pa-
rameters needed for the calculation from the pilot study data. For instance, power calculations
need estimates of inherent variability. The pilot study data can provide those estimates. As
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Table III. Microarray design for a study of juvenile cystic kidney
disease (PKD) in mice.

Array Colour channel

1. Green 2. Red

1 1. Mutant 1. Mutant
2 1. Mutant 2. Wild type
3 2. Wild type 1. Mutant
4 2. Wild type 2. Wild type

illustrations of power calculations from pilot studies and as demonstrations of real applications
of our methodology, we now consider two microarray case studies involving mice.

8.1. Case example 1: juvenile cystic kidney disease (PKD)

Lee et al. [4] considered an experiment where mice with the juvenile cystic kidney mutation
PKD were used. Litter mates, 33 days old, were genotyped. Homozygous (mutant) and wild
type mice were identi�ed. Two pairs of kidneys from homozygous and wild type mice were
isolated and pooled separately. Total RNA was isolated and four comparative array hybridiza-
tion pairs were set up as illustrated in Table III. The table shows how the tissue types (mutant
or wild type) were assigned to the four arrays and two colour channels of each array. A total
of G=1728 genes were under investigation.
The scientists in this study were interested in di�erential gene expression for the two

tissue types, mutant (type 1) and wild type (type 2). Thus, the di�erence Îg1 − Îg2 was
the summary measure of interest for gene g. The alternative hypothesis for which power
was to be calculated was H1:�1 = 1:00. This speci�cation corresponds to a target 2.72-fold
di�erence between mutant and wild type tissues on the natural log scale. The study data gave
an estimate of �̂=0:2315 for the standard deviation of the summary measure on the same
log-scale. Estimation errors in vectors ˆ

g were assumed to be independent. The expected
number of false positives was to be controlled at E(R0)=2. We let the total gene count G
stand in for G0. Using the methodology presented in Section 4.1, the individual power level
for the study was calculated to be 1 − �1 = 0:858, which suggests that 86 per cent of truly
di�erentially expressed genes are expected to be discovered.

8.2. Case example 2: opioid dependence

In another experiment designed to investigate how morphine dependence in mice alters gene
expression, Lee et al. [11] considered a study involving two treatments (morphine, placebo)
and four time points corresponding to consecutive states of opioid dependence, classi�ed as
tolerance, withdrawal, early abstinence and late abstinence. In the experiment, mice received
either morphine (treatment) or placebo (control). Treatment mice were sacri�ced at four time
points corresponding to the tolerance, withdrawal, early abstinence and late abstinence states.
Control mice were sacri�ced at the same time points, with the exception of the withdrawal state
which was omitted on the assumption that the tolerance and withdrawal states are identical
with placebo. The microarray data resulted from hybridization of mouse spinal cord samples to
a custom-designed array of 1728 cDNA sequences. At each time point (that is, at each state),
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Table IV. Microarray design for a study of opioid dependence in mice.

Treatment Dependence time stage

1. Tolerance 2. Withdrawal 3. Early abstinence 4. Late abstinence

1. Placebo array 1 ∗ array 2 array 3
2. Morphine array 4 array 5 array 6 array 7

∗ Omitted, no array.

in both the treatment and control groups, three mice were sacri�ced, for a total of 21 mice.
The paucity of spinal column mRNA in any single mouse required that the mRNA of the
three mice sacri�ced together be combined and blended into a single sample. The treatment
and control samples were labelled with red dye. Other control samples, derived from mouse
brain tissue, were labelled with green dye. The green readings were not used in the analysis
reported here.
The experimental design is shown in Table IV. The natural logarithm of the raw red

intensity reading, without background correction, was used as the response variable. As noted
above, no array was created for the placebo-withdrawal combination (marked ∗ in Table IV).
The original intention was to place the spinal column sample on two spots of the same slide,
yielding a replicated expression reading. This attempt was not entirely successful. The replicate
was missed in the morphine-tolerance combination because of administrative error. Also, the
array for the morphine-late abstinence combination had a large number of defective spots.
Finally, several dozen spots in other arrays were faulty. The �nal microarray data set contains
readings for only G=1722 genes out of the original set of 1728. Six genes were dropped
because they had defective readings for the morphine-tolerance combination, the unreplicated
treatment combination in the design in Table IV. The fact that the replicated spots were nested
within the same array was not taken into account in the analysis.
The aim of the study was to identify genes that characterize the tolerance, withdrawal and

two abstinence states and to describe how gene expression is altered as a mouse moves from
one state to the next. As this aim is somewhat broad it was decided to evaluate power on
the assumption that a di�erential expression would appear in only one treatment combination,
with all other combinations having a uniform expression level. This assumption is exactly
what characterizes the isolated-e�ect design and, hence, the quadratic summary measure is
of interest. We shall use the isolated-e�ect design as a template for the power calculation,
recognizing that this power value will slightly overstate the power achieved in this actual
study because of the failure to replicate one of the seven treatment combinations and the
nesting of duplicate spots within the same arrays.
The alternative hypothesis H1, for which power was to be calculated, had the target dif-

ferential expression pattern given in (34) with |�1|=0:693, which corresponds to a twofold
di�erential expression on the natural log-scale. Thus, the target speci�cation calls for a sin-
gle treatment combination to exhibit a twofold up- or down-regulation relative to all other
treatment combinations. We assume there are r=2 replicates for each of the C=7 treatment
combinations. The study data gave an estimate of �̂=0:1513 for the standard deviation of the
ANOVA error variance. Estimation errors in vectors ˆg were assumed to be independent. The
expected number of false positives was controlled at E(R0)=1. The non-centrality parameter,
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calculated from (35), was �1 = 36:00. We let the total gene count G stand in for G0. Now,
using the methodology presented in Section 4.2, the individual power level was calculated
to be 1 − �1 = 0:944, which implies that 94 per cent of truly di�erentially expressed genes
are expected to be discovered. Approximately the same power value is found in Table II
for E(R0)=1; C=10; �1 = 35 and G0 = 2000, with further re�nement being provided by
interpolation.
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